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In the following, we take a look at (Quantum) Electrodynamics (Q)ED, in d dimen-
sions with the Minkowski metric ηµν = diag(1,−1, . . . ,−1). We start off with some basic
properties of the classical theory and the path integral quantisation of the electromag-
netic field in the first part of this exam. Afterward, we continue with selected aspects of
its renormalisation.

1. Classical theory, quantisation, . . . 25 points
Start with the Dirac Lagrangian

L = iψ̄ /∂ψ −mψ̄ψ

for the spinor field ψ with /∂ = γµ∂µ,
(a) (2 points) and obtain the Dirac equation by the least-action principle.
(b) (1 point) Show that the theory has a one continuous U(1) symmetry,

ψ → expieχ ψ with χ ∈ [0, 2π)

denoting the parameter of the transformation, and a constant e.
(c) (2 points) Derive the Noether current

jµ = ieψ̄γµψ

associated with this symmetry.
(d) (2 points) Verify that the current you found is conserved if the equations of

motion are satisfied.
(e) (4 points) Gauge the U(1) symmetry of the theory by introducing the gauge

potential Aµ, which transforms infinitesimally as

δAµ = ∂µχ .

Now χ = χ(x) becomes coordinate dependent. Use the minimal coupling to
couple the scalar field to an electromagnetic field. This implies that you have to
add at least a term

−jµAµ (1)
to the original Lagrangian. Write down the full, gauged Lagrangian, including
the kinetic term for the gauge field. Verify that it is invariant under the local
U(1) symmetry we wanted to gauge.

(f) (3 points) Derive the classical equations of motion for all fields in the gauged
theory (including the gauge field). You will find the relativistic form of the
inhomogeneous Maxwell equations.

No we would like to quantise this theory in the path integral formalism. For the
moment, we will only look at the free part. Interactions will be considered in the
next problem. At the quadratic level, the spinor field ψ and the gauge potential Aµ

decouple and can be treated independently.
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(g) (3 points) To obtain the propagator for ψ, we need the differential operator

Dxψ(x) = −δS
δψ̄

with S =

∫
ddxL

which gives the equations of motion, you already computed in (a), when setting
it to zero. You know that the Feynman propagator ∆F (x − y) is the Green’s
function

Dx∆F (x− y) = −iδd(x− y) .

Solve this equation by going to momentum space using

∆̃F (p) =

∫
ddx∆F (x)e

−ipx .

For the photon propagator, the situation is a bit more complicated. We have to
isolate the divergence in the path integral for Z0.
(h) (3 points) As a first step, we need to introduce a version of the δ-function in

the path integral formalism. Prove by analogy with the finite-dimensional case,
that the equation

1 =

∫
Dα(x) δ(G(α)) det

(
δG(α)

δα

)
.

Using this expression, we can rewrite

Z0 =

∫
DAeiS[A] =

∫
Dα

∫
DA det

(
δG(Aα)

δα

)
eiS[A]δ (G(A)) (2)

with
Aα

µ = Aµ +
1
e
∂µα

and the Gauge fixing function

G(A) = ∂µAµ − ω(x) .

(i) (1 point) Explain why we can write in (2) δ (G(A)) instead of δ (G(Aα)).
(j) (1 point) Show why we can pull out the determinant from the path integral.

The final trick is to average over all possible gauge choices aka ω(x). We do so with
a Gaussian factor resulting in

Z0 = N(ξ)

∫
Dω exp

(
−i

∫
ddx

ω2

2ξ

)
Z0

with an appropriately fixed normalisation constant N(ξ).
(k) (3 points) This integration can be performed easily because of the δ-function.

As a result, you will obtain a quadratic effective action. Use this action to
eventually compute the propagator for the gauge field Aµ following the same
steps as in task (g).
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2. . . . and renormalisation. 25 points
Consider the Lagrangian density for (spinor) QED in 4-dimensions (d = 4)

L = iψ̄ /Dψ −mψ̄ψ − 1

4
FµνF

µν

with /D = γµDµ, Dµ = ∂µ+ ieAµ and Fµν = ∂µAν − ∂νAµ. In the following, we study
this theory using the path integral formalism. Expanding the Lagrangian in terms
of the gauge potential Aµ and the spinor field ψ to quadratic order, we found in the
lecture the propagators

p

= i
/p+m

p2 −m2
, and

k
= i

gµν
k2

,

for the electron and photon (in Feynman gauge), respectively.
(a) (1 point) Expand the Lagrangian to cubic order to obtain the photon-electron

vertex. You should find

= −ieγµ .

Please show explicitly how to obtain this result. It is only stated here because
we will need it for the following task.

(b) (3 points) Next, compute the superficial degree of divergence by taking into
account all Feynman rules above. Hint: You should use Euler’s formula for
planar graphs 1 = V −E +F , where V is the number of vertices, E denotes the
number of edges, and F of faces.

(c) (3 points) Use the result from task (b) to draw all the superficially divergent
diagrams. Which of them are actually divergent, when you remember form the
lecture that in QED only

• the electron mass and its field,
• the coupling to the electromagnetic field,
• and the polarisation of the vacuum

are renormalised?
(d) (3 points) Use these three divergent diagrams, to obtain the counter terms in

the renormalised Lagrangian and their Feynman rules. In particular, you should
get

= −ieδZeγ
µ .
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After this preparation, we can eventually compute the renomalized vertex at one-loop.
(e) (2 points) There is a useful identify for γ-matrices,

γνγµγν = (2− d)γµ ,

we need later on. Proof it, using the Clifford algebra {γµ, γν} = 2ηµν and
ηµνηµν = d.

(f) (4 points) Now, compute

iV µ(p, p′) =

p
k

p′

q

where q = p − p′ due to momentum conservation. Do not perform the loop
integration at this stage, just apply the Feynman rules.

(g) (4 points) In general, you will that iV µ(p, p′) has the form

V µ(p, p′) = f1γ
µ + f2p

µ + f3p
′µ + f4q

µ

we only need f1, because its divergence will be absorbed by the counter term
we computed in (e). Furthermore, assume that the external states are on-shell,
which implies p2 = p′2 = m2. Compute f1 and show that it can be written
exclusively in terms of q2. Hint: f1 is a Lorentz scalar, which only depends
on pµ and p′µ. Therefore the only way these two can enter is the combination
pµp′µ = p · p′. But at the same time, we know q2 = p2 − 2p · p′ + p′2.

To continue with the renormalisation, we need to fix a momentum at which we want to
absorb the divergence into the counter term. A natural choice, because it corresponds
to static electromagnetic interaction (Coulomb’s law), is q = 0. Therefore, we are
left with

= + + · · · = −ieRγµ|q=0

with the renormalised charge eR, defined by (1 + δZe)eR = e.
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(h) (4 points) Finally, set q = 0 and obtain the divergent part of f1(0), which we
need to fix the counter term, by dimensional regularisation. Hint: You should
eventually find

f1(0) ∼
∫

ddk

(2π)d
αk2 + βm2

k2(k2 −m2)2
.

The second term, proportional to β, is finite in d = 4. Hence you may drop it.
Furthermore, the two following identities might come in handy:

• Feynman parameter formula:

1

AB2
=

∫ 1

0

dx
2(1− x)

(xA+ (1− x)B)3
.

• In d = 4− ε dimensions∫
ddk

(2π)d
k2a

(k2 +∆)b
= i

1

(4π)d/2
1

∆b−a−d/2

Γ(a+ d/2)Γ(b− a− d/2)

Γ(b)Γ(d/2)

where Γ(ε) = ε−1 +O(ε) .
(i) (1 point) Obtain the one-loop contribution to the counter term δZe by canceling

the divergent part of f1(0) (in the minimal subtraction scheme).


