
Gauge/Gravity Duality, Winter 2024/25

Lecturer: Dr. Falk Hassler, falk.hassler@uwr.edu.pl
Tutorials: M.Sc. Luca Scala, luca.scala@uwr.edu.pl

8. Supersymmetry (16 points)

To be discussed on Friday, 6th December, 2024 in the tutorial.
Please indicate your preferences until Monday, 02/12/2024, 21:00:00 on the website.

Exercise 8.1: Wigner classification.

Consider the Poincaré algebra

[Jµν , Jρσ] = i(ηµρJνσ − ηµσJνρ − ηνρJµσ + ηνσJµρ),

[Jµν , Pρ] = i(ηµρPν − ηνρPµ),

[Pµ, Pν ] = 0.

a) (3 points) A Casimir operator is a polynomial operator in the generators of the algebra
that commutes with every generator. Show that the following two operators are Casimir
operators for the Poincaré algebra:

C(2) := P 2 = PµP
µ (quadratic Casimir = mass Casimir),

C(4) := W 2 = WµW
µ (quartic Casimir = spin/helicity Casimir),

where Wσ = 1
2
εµνρσJ

µνP ρ is called the Pauli-Lubanski pseudovector. (Note: the full calcu-
lations are lenghty, therefore for the exercise just prove that W 2 commutes with Pµ and P 2

commutes with Jµν .)
b) (4 points) It is possible to show that the unitary irreducible representations (UIRREPS) of

Poincaré are in correspondence with all possible particle states in a theory with Poincaré
invariance. The classification of all these UIRREPS was made by Wigner in 1948. This
means that we can classify all the particles in a Poincaré invariant theory according to
their mass and spin/helicity eigenvalues. Since p2 = m, it is easy to understand why the
eigenvalues of the quadratic Casimir label masses of particles. For the quartic one, consider
the following two cases:

• p2 > 0. In this case we can choose a simple reference frame where pµ = (p0, 0, 0, 0)
with p0 > 0. Show that in this case the quartic Casimir labels the spin of a particle,
W 2 ∝ m2S2, where we have defined the spin operator Si = εijkJjk.

• p2 = 0 and p0 > 0. In this case we can choose pµ = (p0, 0, 0, p0). Show that in this case,
when W 2 = 0, the components of the quartic Casimir label the helicity of a particle,
W 2

0 = W 2
3 ∝ (S ·P )2 (remember that the helicity is the projection of S on the direction

of P ).
The other cases are not relevant for us because p2 = 0 with p0 = 0 gives just the vacuum,
and p2 < 0 is in general neglected since it gives rise to tachyonic particles.

c) (2 points) When one augments the Poincaré algebra to the super-Poincaré algebra, W 2 is
not anymore a Casimir operator. One can, then, modify it in order to find a good Casimir
operator. To understand how this modification works, show that one can rewrite

W 2 = CµνC
µν ,
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with Cµν = WµPν −WνPµ. It is, then possible, to find a quartic Casimir modifying Cµν as

C̃µν = W̃µPν − W̃νPµ,

with W̃µ = Wµ − 1
4
Q̄aα̇σ̄

α̇β
µ Qa

β.
d) (3 points) Show explicitly that W 2 is not a Casimir for the supersymmetry algebra com-

puting a single bracket with it that does not vanish. Then show that the same bracket
vanishes when one modifies W 2 as in the previous exercise.

Exercise 8.2: Fermion number operator.

Consider the following fermion number operator Nf , acting on bosonic states |B〉 and fermionic
states |F 〉 as

Nf |B〉 = |B〉, Nf |F 〉 = −|F 〉.

a) (1 point) Knowing that the supersymmetry charges Qα and Q̄α̇ transform a bosonic state
into a fermionic state and vice versa, what is the anticommutator of them with Nf?

b) (3 points) Using the cyclicity of the trace, show that Tr(Nf{Qα, Q̄β̇}) = 0. Comparing this
result with the expression of Tr(Nf{Qα, Q̄β̇}) found employing the supersymmetry algebra,
and knowing that the difference between bosonic degrees of freedom nb and fermionic degrees
of freedom nf in a supersymmetry multiplet is given by TrNf , show that nb = nf .
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