Gauge/Gravity Duality, Winter 2024/25

Lecturer: Dr. Falk Hassler, falk.hassler@uwr.edu.pl Tutorials: M.Sc. Luca Scala, luca.scala@uwr.edu.pl

14. Correlators & holographic renormalisation.

To be discussed on Friday, 31^{st} January, 2025 in the tutorial. Please indicate your preferences until Tuesday, 28/01/2025, 21:00:00 on the website.

Exercise 14.1: Bulk-to-boundary propagator.

The bulk-to-boundary propagator can be given as

$$K_{\Delta}(z,x;y) = \lim_{w \to 0} \frac{2\Delta - d}{w^{\Delta}} G_{\Delta}(z,x;w,y)$$

where G_{Δ} is the bulk-to-bulk propagator. Verify this expression using Green's second identity

$$\int_{\mathcal{M}} \mathrm{d}z \mathrm{d}^{d}x \sqrt{g} \left(\phi(\Box_{g} - m^{2})\psi - \psi(\Box_{g} - m^{2})\phi \right) = \int_{\partial \mathcal{M}} \mathrm{d}^{d}x \sqrt{\gamma} (\phi \partial_{n}\psi - \psi \partial_{n}\phi),$$

where γ is the determinant of the induced metric on $\partial \mathcal{M}$ and ∂_n is the derivative normal to the boundary (in our case $\partial_n = z \partial_z$, check it).

Hint: You will ned the following asymptotic behaviours:

$$\lim_{z \to \epsilon} K(z, x; x') = e^{\Delta_-} \delta(x - x'),$$
$$\lim_{z \to \epsilon} G(z, x; z'', x'') \sim e^{\Delta_+}.$$

Exercise 14.2: Holographic renormalisation.

Consider the (d + 1)-dimensional AdS metric in Fefferman-Graham coordinates:

$$\mathrm{d}s^2 = L^2 \left(\frac{\mathrm{d}\rho^2}{4\rho^2} + \frac{1}{\rho} g_{\mu\nu}(x,\rho) \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} \right),$$

where x^{μ} , $\mu \in \{0, 1, 2, 3\}$ are the coordinates parallel to the boundary of AdS and ρ is the redial direction.

a) (4 points) Consider the following Penrose-Brown-Henneaux diffeomorphism:

$$\rho = \rho'(1 - 2\sigma(x')),$$

$$x^{\mu} = (x')^{\mu} + a^{\mu}(x', \rho')$$

with $g'_{\rho\rho} = g_{\rho\rho}$ and $g'_{\mu\rho} = g_{\mu\rho}$ (where ρ is again the radial direction, not a generic 4-index). Show that

$$\partial_{\rho}a^{\mu} = \frac{L^2}{2}g^{\mu\nu}\partial_{\nu}\sigma,\tag{1}$$

$$g_{\mu\nu} \to g_{\mu\nu} + 2\sigma \left(1 - \rho \frac{\partial}{\partial \rho}\right) g_{\mu\nu} + \nabla_{\mu} a_{\nu} + \nabla_{\nu} a_{\mu}.$$
 (2)

(16 points)

5 points

- b) (3 points) Explain why (1) induces a conformal transformation $g_{\mu\nu}(x) \to e^{2\sigma(x)}g_{\mu\nu}(x)$ at the boundary.
- c) (4 points) Consider a scalar field with boundary conditions

$$\phi(\rho, x) = \rho^{(d-\Delta)/2} \bar{\phi}(\rho, x),$$

$$\bar{\phi}(\rho, x) = \rho_{(0)}(x) + \rho \phi_{(2)}(x) + \rho^2 \phi_{(4)}(x) + \dots$$

•

Derive the equation of motions for $\phi(x, \rho)$ and using them show that

$$\phi_{(2)}(x) = \frac{1}{2(2\Delta - d - s)} \Box_{(0)} \phi_{(0)}(x).$$