
Quantum Field Theory, Summer 2024
Lecturer: Dr. Falk Hassler, falk.hassler@uwr.edu.pl
Tutorials: Prof. UWr Pok Man Lo, pokman.lo@uwr.edu.pl
Assistant: M.Sc. Alex Swash, alex.swash@uwr.edu.pl

13. Quantisation of GR and String Theory (18 points)

To be discussed on Tuesday, 11th June, 2024 in the tutorial.
Please indicate your preferences until Thursday, 06/06/2024, 21:00:00 on the website.

In the last lecture, we discussed some of the problems which one encounters while trying to
quantise the classical theory governing gravity, general relativity. A central ingredient in this
work has been some fundamental concepts from differential geometry, like a metric compatible
covariant derivative and the Riemann tensor it gives rise to. In this exercise, we will discuss
them by looking at a simple example, a two-sphere.
Moreover, for those of you how would like to improve their grades in the tutorials, there is
an extra problem about the one loop β-functions of the two-dimensional non-linear σ-model,
which describes a closed string. It is worth six extra points.

Exercise 13.1: Differential geometry of a 2-sphere

Consider the metric of a 2-sphere of radius a:

ds2 = gµνdx
µdxν = a2

[
dθ2 + sin2 θdφ2

]
.

The metric encodes all information on the geometry of the manifold. We will determine all
geometric quantities that are relevant for general relativity:
a) (3 points) The metric: Choosing x1 = θ and x2 = φ, read off the matrix gµν . Show that

you obtain this metric by embedding a sphere in R3 with

x1 = a cos θ , x2 = a sin θ cosφ , and x3 = a sin θ sinφ .

b) (3 points) The Christoffel symbols: The Christoffel symbols are defined as

Γκ
λµ =

1

2
gκν

(
∂gµν
∂xλ

+
∂gµλ
∂xµ

− ∂gλµ
∂xν

)
.

They enter covariant derivatives such as ∇µV
ν = ∂µV

ν + Γν
µλV

λ, where the correction
term with the Christoffel symbols ensures that the covariant derivative indeed transforms
“covariantly” under arbitrary coordinate transformations xµ → x′µ(xν), i.e.,

∇µV
ν → (∇µV

ν)′ =
∂xλ

∂x′µ
∂x′ν

∂xρ
∇λV

ρ ,

without second derivatives in the coordinates.
Compute the non-vanishing Christoffel symbols for the two-sphere. Hint: Γλ

µν = Γλ
νµ, so

only a few components have to be computed explicitly.
c) (3 points) The Riemann tensor: The Riemann curvature tensor has the form

Rκ
λµν = ∂µΓ

κ
νλ − ∂νΓ

κ
µλ + Γη

νλΓ
κ
µη − Γη

µλΓ
κ
νη .

Calculate the non-vanishing components of Rκ
λµν for the two-sphere. Hint: Use the anti-

symmetry in µ and ν to avoid redundant computations.
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d) (3 points) The Ricci tensor: The Ricci tensor is defined as

Ricµν = Rλ
µλν .

Calculate Ricµν for S2.
e) (3 points) The scalar curvature: The scalar curvature is given as

R = gµνRicµν .

Calculate R for S2. How does the scalar curvature behave in the limit a → ∞? Interpret
this behaviour.

f) (3 points) The Einstein tensor: The Einstein equation is the field equation of general
relativity. It relates the curvature of spacetime to the matter distribution:

Gµν = 8πGTµν ,

where G denotes Newton’s constant, Tµν is the energy-momentum tensor and Gµν denotes
the Einstein tensor:

Gµν = Ricµν −
1

2
gµνR .

Calculate Gµν for S2.

Bonus Exercise 13.2: One-loop β-function of 2D non-linear σ-model 6 bonus points

Derive the one-loop β-functions for the non-linear σ-model

S =
1

4πα′

∮
d2σ Gij∂µX

i∂µXj

in full detail by using the background field method that we explained in the lecture. The
challenge in this problem, and this is what you get the points for, is to understand every small
step of the derivation. I do not just want you to copy derivations from a book or lecture notes.
You should understand the steps and be able to explain every detail.
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