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11. Renormalisation III (21 points)

To be discussed on Wednesday, 29th May, 2024 in the tutorial.
Please indicate your preferences until Friday, 24/05/2024, 21:00:00 on the website.

In exercise 9, we studied divergences in loop integrals of Yukawa theory with the Lagrangian

L =
1

2
∂µφ∂

µφ− 1

2
m2
Sφ

2 − λ

4!
φ4 + ψ(i/∂ −mF )ψ − igψγ5ψφ . (1)

Our most important observation was that we have to add the coupling λφ4/4! to render the
theory renormalisable. In the meanwhile, we practised during the last exercise how to compute
renormalised amplitudes by adding appropriate counterterms. We will do this for (1) at one
loop in the following.

Exercise 11.1: The Yukawa potential

Before, we start with the more technical part, let us connect Yukawa theory with the nuclear
force which stabilises the nucleus of atoms. The latter contain positively charged protons which
are repelled by the electromagnetic force. However, at least sufficiently light nuclei are stable.
Therefore, there has to be an additional force, the nuclear force, which overcomes the Coulomb
force. We will see how this force arises from (1) now.
a) (3 points) Compute the four particle scattering amplitude

iM =
p

p′ k′

k
+

p k

k′
p′

.

We actually need them in the non-relativistic limit, where

u(p′)u(p) = 2m

holds. Hint: Use the Feynman rules we derived in the last exercise. You should find in the
non-relativistic limit

iM =
4ig2m2

F

|~p′ − ~p|2 +m2
S

.

b) (3 points) Compare this result with the Born approximation to scattering amplitudes in
non-relativistic quantum mechanics,

iM
4m2

F

= −iV (~q), ~q = ~p′ − ~p .

and compute the potential in position space, i.e. V (r). Why is the force it describes
attractive? What happens in the limit mS → 0?
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Exercise 11.2: One loop renormalisation

We now continue the discussion from last exercise.
a) (3 points) Figure out the counterterms required to absorb all divergences and derive the

corresponding Feynman rules. Hint: You should use

φ =
√
ZφφR , ψ =

√
ZψψR , m2

S =
ZS
Zφ
m2
S,R , m2

F =
ZF
Zψ

m2
F,R , g =

Zg

Zψ
√
Zφ
gR ,

and one more substitution for λ, which you will figure out yourself, to eventually find

p

= i(δZφp
2 − δZSm

2
S,R) ,

p

= i(δZψ/p− δZFmF,R) ,

and

= δZggRγ
5 , = iδZλλR

with
Zi = 1 + δZi +O(g2) .

b) (3 points) We now will renormalise the four different types of divergent diagrams that we
discovered in the last exercise. Start with the scalar field and write down the two diagrams
which contribute at the two loop level to its full propagator. Use dimensional regularisation
to compute their divergent contributions and absorb them into δZφ and δZS. Hint: Work in
the minimal subtraction scheme (MS) where only the divergent part enters the counterterm
and you only have to compute the divergent part of the two contributing diagrams.

c) (3 points) Repeat these steps for the fermion propagator to fix δZψ and δZF ,
d) (3 points) for the Yukawa Coupling (δZg) and finally
e) (3 points) for the φ4-vertex (δZλ).
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