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Theories of class S [Gaiotto, 2012]

6D N = (2,0) SCFT
I IIB on R5,1 × C2/Γ , Γ ⊂ SU(2)→ ADE-classification [Witten, 1995]

I N M5-branes in flat space (AN ) [Strominger, 1996]
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S-duality of 4D N=2 SU(2) with Nf = 4 flavors [Seiberg and Witten, 1994]

I flavor enhances to SO(8)⊃SO(2)a×SO(2)b× SO(2)c×SO(2)d

I exactly marginal gauge coupling τ =
θ

π
+

8πi
g2

I weak coupling limit τ → i∞
I S-duality is SL(2,Z) action on complex structure moduli space
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Constrains on punctures

t

S1

I compactify 6D N = (2,0) on S1

I 5D N=2 gauge theory with matter in bifundamental of G

I maximally SUSY puncture→ 1/2 BPS equations for

Σ(t) =
Σ

t
Q(t) =

Q
t

Q̃(t) = 0

(in terms of N=1 4D superfields)

I results in Nahm pole equations [Nahm, 1980]

[Σ,Q] = Q [Q,Q†] = Σ

I Σ, Q, Q† are representations of su(2)
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Solutions

I Q is a nilpotent |Γ| × |Γ| matrix→ Jordan normal form

e.g. Q =

 0 1 0
0 0 1
0 0 0

 Σ =

 1 0 0
0 0 0
0 0 −1


I a compact representation is the Young diagram
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Solutions

I Q is a nilpotent |Γ| × |Γ| matrix→ Jordan normal form

e.g. Q =

 0 0 0
0 0 0
0 0 0

 Σ =

 0 0 0
0 0 0
0 0 0


I a compact representation is the Young diagram

G Γ punctures

SU(2) A1

SU(3) A2

SU(4) A3
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¿ Generalization to N=1 ?
I 6D N = (1,0) SCFT

I compactification Σ with punctures→ 4D N=1 SCFTs [Razamat, Vafa, and

Zafrir, 2016]

Challenges

I much more 6D N = (1,0) than N = (2,0) SCFTs [Heckman, Morrison,

and Vafa, 2014]

I less constrained by SUSY
...
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Theories of Class SΓ. . . [Heckman, Jefferson, Rudelius, and Vafa, 2017]

I stack of N M5-branes probing ADE-singularity C2/Γ

I compactification on S1 → 5D quiver gauge theory

I organized according to extended Dynkin diagrams
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I stack of N M5-branes probing ADE-singularity C2/Γ

I compactification on S1 → 5D quiver gauge theory

I organized according to extended Dynkin diagrams

N

N . . . N

Âk
N

N

N

N

2N . . . 2N

D̂k

N 2N 3N 2N N

2N

NÊ6

similar for Ê7 and Ê8
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. . . and their punctures

I again, maximally SUSY punctures→ 1/2 BPS equations for

Σ(t) =
Σ

t
Q(t) =

Q
t

Q̃(t) =
Q̃
t

(in terms of N=1 4D superfields in covering space)

I results in generalized Nahm pole equations [Heckman, Jefferson, Rudelius, and Vafa, 2017]

[Σ,Q] = Q [Q, Q̃] = 0

[Σ, Q̃] = Q̃ [Q,Q†] + [Q̃, Q̃†] = Σ

plus invariance under Γ-action with

doublet
(

Q
Q̃

)
and singlet Σ
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A closer look at Âk quivers

I choose Γ 3 γ = diag(1N , ω1N , ω
21N , . . . , ω

k1N)

γQγ† = Q γQ̃γ† = Q̃ γΣγ† = 0
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A closer look at Âk quivers

I choose Γ 3 γ = diag(1N , ω1N , ω
21N , . . . , ω

k1N)

γQγ† = Q γQ̃γ† = Q̃ γΣγ† = 0

Σ =

p(1)
. . .

p(k)

 Q =


q(1)

. . .
q(k − 1)

q(k)

 Q̃ =


q̃(k)

q̃(1)
. . .

q̃(k − 1)



p(k−2)

p(k−1)p(k)

p(1)

p(2)
. . . . . .

q̃(k)

q(k − 1)

q̃(k − 1)

q̃(1)

q(1)

q(k)
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Finding punctures reduces to a “simple” problem in algebra

Problem

1. take N|Γ| × N|Γ| matrices Q, Q̃ and Σ

2. restrict them to fit the ADE-type of Γ

3. find all fulfilling the generalized Nahm pole equations

I more complicated than we initially thought

I even for the simplest case N=1 Âk quivers
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N=1 Âk quivers and a dynamical system

I rewrite gen. Nahm pole eq. in terms of q(i), q̃(i) and p(i)

[Q, Q̃] = 0 → q(i + 1)q̃(i + 1) = q(i)q̃(i)

[Q,Q†] + [Q̃, Q̃†] = Σ → x(i)− x(i − 1) = p(i)

[Σ,Q] = Q → q(i)
(

p(i)− p(i + 1)
)

= q(i)

[Σ, Q̃] = Q̃ → −q̃(i)
(

p(i)− p(i + 1)
)

= q̃(i)

with x(i) = q(i)q(i)∗ − q̃(i)q̃(i)∗

I Q is nilpotent, thus Qk=1k

k∏
i=1

q(i)=0 → q(i)q̃(i) = 0

I knowing x(i) is sufficient to get q(i) and q̃(i)
I discrete dynamical system

f :

(
p
x

)
(i + 1) =

(
1 0
1 1

)(
p
x

)
(i)− sgn x(i)

I choose x(1), p(1) and all other x(i), p(i) are fixed1
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I discrete dynamical system

f :

(
p
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)
(i + 1) =

(
1 0
1 1

)(
p
x

)
(i)− sgn x(i)

I choose x(1), p(1) and all other x(i), p(i) are fixed1

1 In general p(i + 1) is unconstrained if x(i) = 0. We choose p(i + 1)=p(i) to formally extend the dynamical system
beyond this point.
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Periodic orbits

I punctures = periodic orbits of length k = |Γ|
I strongly depends on the initial condition, e.g.

I How to find the right initial conditions?
x(k) 6= 0

x(k) = 0
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Divide and conquer

I if x(k)=0 then p(1)=x(1)=l , iterate line instead of point

−4 −2 2 4
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−2

2

4
l

x

p

0 ∞
↑

l :
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A tree of solutions

I periodic orbits of type x(k) = 0 organized in tree structure
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Results, quantitative

I two kinds of solutions:

short orbits and long orbits

I for solution of length k

l ∈ 1
2k

{
− k(k − 1), −k(k − 1) + 4, . . . , k(k − 1)

}
I not all elements in this set are realized, # solutions < k2

I all relevant information encoded in sgn x(i)

I for all periodic orbits
k∑

i=1

sgn x(i) = 0
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and qualitative

I the tree of solutions is surprisingly complex

I any pattern? e.g. self similar like Barnsley’s fern?

I even # of solutions has interesting structure
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Periodic orbits with x(k) 6= 0

I apply “divide and conquer” algorithm to

each p(1) ∈ set of allowed p and x(1) = l

I slow but guaranteed to find all solutions

I faster: take x(k1)=0 and shift it slightly

p(1) = l1 and x(1) = l1 + ∆

I sufficiently small ∆, only sgn x(k1) changes

p(k1) = g(l1)− sgn ∆︸ ︷︷ ︸
l2

and x(k1) = p(k1) + ∆︸ ︷︷ ︸
l2 + ∆

I iterate

li+1 = g(li)− sgn ∆

until ln = l1
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I slow but guaranteed to find all solutions

I faster: take x(k1)=0 and shift it slightly

p(1) = l1 and x(1) = l1 + ∆

I sufficiently small ∆, only sgn x(k1) changes

p(k1) = g(l1)− sgn ∆︸ ︷︷ ︸
l2

and x(k1) = p(k1) + ∆︸ ︷︷ ︸
l2 + ∆

I iterate

li+1 = g(li)− sgn ∆

until ln = l1
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l2

and x(k1) = p(k1) + ∆︸ ︷︷ ︸
l2 + ∆

I iterate

li+1 = g(li)− sgn ∆

until ln = l1
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Higher poles

I consider higher poles for 1/2 BPS equations

Σ(t) =
∑
n=1

Σn

t−n Q(t) =
∑
n=1

Qn

t−n Q̃(t) =
∑
n=1

Q̃n

t−n

I results in the puncture equations [Heckman, Jefferson, Rudelius, and Vafa, 2017]∑
k+l=m

[Σk ,Ql ] = (m − 1)Qm−1
∑

k+l=m

[Qk , Q̃l ] = 0

∑
k+l=m

[Σk , Q̃l ] = (m − 1)Q̃m−1
∑

k+l=m

[Qk ,Q
†
l ] + [Q̃k , Q̃

†
l ] = (m − 1)Σm−1

I linear in unknown quantities, e.g.

I permits solution order by order with Q1=Q, Q̃1=Q̃ and Σ1=Σ
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l ] + [Q̃k , Q̃

†
l ] = (m − 1)Σm−1

I linear in unknown quantities, e.g.

m=3: [Q1, Q̃2] + [Q2, Q̃1] = 0

I permits solution order by order with Q1=Q, Q̃1=Q̃ and Σ1=Σ
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and another dynamical system

I for ~vm(i)=
(
qm q̃m pm

)T

fm : ~vm(i + 1) = Mm(i)~vm(i) + ~nm(i)

I find periodic orbit of length k

f k
m = ~vm(k + 1) = Mm~vm(1) + ~nm = ~vm(1)

Mm(i) =



−αm(i) + βm(i) 0 δm(i)
0 βm(i) 0
−γm 0 1

 for x(i) > 0 and x(i + 1) > 0

 0 βm(i) 0
αm(i)− βm(i) 0 −δm(i)
−γm(i) 0 1

 for x(i) > 0 and x(i + 1) < 0

 0 αm(i)− βm(i) δm(i)
βm(i) 0 0

0 γm(i) 1

 for x(i) < 0 and x(i + 1) > 0

βm(i) 0 0
0 −αm(i) + βm(i) −δm(i)
0 γm(i) 1

 for x(i) < 0 and x(i + 1) < 0

αm(i) = γm(i)δm(i) , βm(i) =

√∣∣∣ x(i)
x(i+1)

∣∣∣ , γm(i) = m−2√
|x(i)|

, δm(i) = m−1
2
√
|x(i+1)|
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and another dynamical system

I for ~vm(i)=
(
qm q̃m pm

)T

fm : ~vm(i + 1) = Mm(i)~vm(i) + ~nm(i)

I find periodic orbit of length k

f k
m = ~vm(k + 1) = Mm~vm(1) + ~nm = ~vm(1)

~nm=0

tr Mm = 3
0no

Mm = 13 ~nm 3 Im Mm xno

1yes

no

xyes

yes
no

tr Mm = 3
xno

Mm = 13 1no

2yes

yes

yes

x no orbit

n n-dim. family
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Levels of complexity

I remember: punctures for N = 2→ Young diagrams

I N = 1 class SΓ, N=1, Γ = Zk , Q̃ = 0 [Heckman, Jefferson, Rudelius, and Vafa, 2017]

2
1 4
0 3

decorated with Γ-charge

I many new options away from su(2) branch, e.g. l1 = 1/3

I some of them can be shifted to with extra d.f. x(1)

I x(1) can be tuned to gives add d.f. for h.o. punctures

Example

p(1) =
3
2

x(1) = 0.8805582419579654
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k
4
5
6
7
8
9
10

1
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6

3
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1
3

2
5

3
7

4
9

1
2

2
3

4
5

5
6

8
9

9
10

1 9
7

13
10

4
3

3
2

16
9

2 5
2

3 7
2

4 9
2

↑↓

↑↓

↓↑↑

↑
↓↓ ↑

↓↓↓

↑↓

↑

↓↑↑↑

↑

↓↓↓↓

↑↓
↓↓

↓

↑↓
↓

↑

↓↑↑

↑↓ ↑↑ ↑
↑

↑ ↓ ↑

su(2) irreps
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N > 1 Âk quivers are challenging
I remember N=1: for each “time step” solve

x(i) = q(i)q(i)∗ − q̃(i)q̃(i)∗ and 0 = q(i)q̃(i)

I 2 complex quadratic equations for given x(i)

I unique solution after gauge fixing U(1)

I for general N, 2 N2 complex quadratic equations modulo U(N)

I D̂ and Ê quivers admit embedding into Â for N > 1
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Class S Class SΓ Dynamical system N > 1 Summary



N > 1 Âk quivers are challenging

I use N decoupled copy of the N=1 system

I embedding into u(k) with
irreps > fundamental

I remember N=1: for each “time step” solve

x(i) = q(i)q(i)∗ − q̃(i)q̃(i)∗ and 0 = q(i)q̃(i)

I 2 complex quadratic equations for given x(i)

I unique solution after gauge fixing U(1)

I for general N, 2 N2 complex quadratic equations modulo U(N)

I D̂ and Ê quivers admit embedding into Â for N > 1

Class S Class SΓ Dynamical system N > 1 Summary



Embedding of into su(k)

I Q, Q̃, Σ are elements of su(k) in the fundamental irrep

I to use other irreps

1. tensor them n times

2. project using the Young symmetrizer with n boxes

I not all irreps are allow

k \N 1 2 3 4 5
3 3 6 15
5 5 10 15
6 6
7 7 21 35
9 9 36
10 10

I example 10 of su(5) with l = 2/5
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Summary

Even for the simplest class SΓ theories, the punctures show an
amazingly rice structure compared to the N = 2 case.

still lots of questions

I quantitative measure for complexity
I connection to spin chain
I statistical properties of solutions
I are the characteristic quantities for a puncture
I can we do more for N > 1, e.g. large N limit AdS/CFT
...
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