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Theories of class S [Gaiotto, 2012]

6D N = (2,0) SCFT
» [IBon R>! x C?/I', T c SU(2) — ADE-classification miten 199s]
» N M5-branes in flat space (Ap) istrominger, 1996]

puncture

twisted
compactification

4D NV =2 SCFT
» gauge group G

» flavor symmetry from punctures on ©
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Constrains on punctures
81
» compactify 6D NV = (2,0) on S

—_—

t
» 5D A'=2 gauge theory with matter in bifundamental of G
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Constrains on punctures
81
» compactify 6D NV = (2,0) on S

—_—

t
» 5D A'=2 gauge theory with matter in bifundamental of G

» maximally SUSY puncture — 1/2 BPS equations for

(in terms of A'=1 4D superfields)

» results in Nahm pole equations nanm, 1ss0)
X, Q=Q [Q, QT] =X
» ¥, Q, Q' are representations of su(2)
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¢, Generalization to N'=1 ?

» 6D A = (1,0) SCFT

» compagctification ¥ with punctures — 4D N'=1 SCFTg [Razamat Vafa and
Zafrir, 2016]
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¢, Generalization to N'=1 ?

» 6D A = (1,0) SCFT

Razamat, Vafa, and
[ [

» compactification £ with punctures — 4D N'=1 SCFT

Zafrir, 2016]

Challenges

» much more 6D NV = (1 , O) than N = (2’ 0) SCFTg [Heckman, Morrison,

and Vafa, 2014]

» less constrained by SUSY
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¢, Generalization to N'=1 ?

» 6D A = (1,0) SCFT

» compagctification ¥ with punctures — 4D N'=1 SCFTg [Razamat Vafa and
Zafrir, 2016]

Challenges

» much more 6D N = (1 , 0) than N = (2’ O) SCFTg Heckman, Morrison,

and Vafa, 2014]

» less constrained by SUSY

» use “simple” 6D N'=(1,0) SCFT
N M5-branes probing ADE-singularity C2/I

» try to classify all punctures [Hecman Jeflerson.
Rudelius, and Vafa, 2016]

» harder than you might think
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Theories of Class Sr. « « [Heckman, Jefferson, Rudelius, and Vafa, 2016]
» stack of N M5-branes probing ADE-singularity C?/I

» compactification on S' — 5D quiver gauge theory
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Theories of Class Sr. « « [Heckman, Jefferson, Rudelius, and Vafa, 2016]
» stack of N M5-branes probing ADE-singularity C?/I
» compactification on S' — 5D quiver gauge theory

» organized according to extended Dynkin diagrams




...and their punctures

» again, maximally SUSY punctures — 1/2 BPS equations for

(in terms of A'=1 4D superfields in covering space)
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..and their punctures

» again, maximally SUSY punctures — 1/2 BPS equations for

(in terms of A'=1 4D superfields in covering space)
[Heckman, Jefferson, Rudelius,

» results in generalized Nahm pole equations
and Vafa, 2016]

[£,Ql=Q [Q,Q]=0
[,Q=Q [Q,Q1+[Q Q=%

plus invariance under -action with

doublet (g) and singlet ©
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A closer look at A, quivers
» choose I 5 v = diag(1n, win, W?1n, ..., wK1pn)

Yyt =wQ A =w 1@ vyt =%
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A closer look at A, quivers
» choose I 5 v = diag(1n, win, W?1n, ..., wK1pn)

Yy =wQ Ayt =w @ yEqt =%

o) at1) ~ a(k)
z—( ) Q= g | .
p(k) ’
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N=1 Z\k quivers and a dynamical system

Class

> rewrite gen. Nahm pole eq. in terms of g(i), §(i) and p(i)
(@8 =0 - qli+1)g(i +1) = q()()
[Q.QT+[Q.QT=% — x(i) = x(i — 1) = p(i)
=.al=Q = q()(p()—pli+1)) = a(i)

)
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N=1 Z\k quivers and a dynamical system

» rewrite gen. Nahm pole eq. in terms of q(i), §(i) and p(/)
[@.0=0 - qi+1)a(i+1) = q()a(i)
[Q.Q1+[Q Q=% — x(i) = x(i — 1) = p(i)
=, =Q —  a()(p(i) - pli+1)) = q)
£.Q1=Q —~ —a()(p() ~pli+1)) = G0)
with x(7) = q(i)q(i)" - §(i)g(iy’
» Qs nilpotent, thus Qf=1 ﬁ q(H)=0 — q(Hg(i)=0

i=1
» knowing x(/) is sufficient to get q(i) and g(/)
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N=1 Z\k quivers and a dynamical system

» rewrite gen. Nahm pole eq. in terms of q(i), (/) and p(/)
with x(7) = q(1)q(/)* — q(1)q(/)*

» discrete dynamical system

f- (f(’) (i+1)= G ?) (’;) (i) — sgn x(i)
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N=1 Z\k quivers and a dynamical system

» rewrite gen. Nahm pole eq. in terms of q(i), (/) and p(/)
with x(7) = q(1)q(/)* — q(1)q(/)*

» discrete dynamical system

f- <§> (i+1)= G ?) (’;) (i) — sgn x(i)

» choose x(1), p(1) and all other x(i), p(i) are fixed'

1 Ingeneral p(i + 1) is unconstrained if x(/) = 0. We choose p(i + 1)=p(/) to formally extend the dynamical system
beyond this point.
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Periodic orbits

» punctures = periodic orbits of length k = ||

» strongly depends on the initial condition, e.g.
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Periodic orbits

» punctures = periodic orbits of length k = ||

> strongly depends on the initial condition, e.g. ;) _ 13 4 _ 12
4 4

48 49
k=100, x(1) = —ﬁ,pm) =15

» How to find the right initial conditions?
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A tree of solutions

» periodic orbits of type Q x(k) = 0 organized in tree structure
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A tree of solutions

» periodic orbits of type Q x(k) = 0 organized in tree structure
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and qualitative

» the tree of solutions is surprisingly complex
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and qualitative

» the tree of solutions is surprisingly complex
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and qualitative

» the tree of solutions is surprisingly complex
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and qualitative

» the tree of solutions is surprisingly complex

» any pattern? e.a. self similar like Barnsley’s fern?
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and qualitative

» the tree of solutions is surprisingly complex
» any pattern? e.g. self similar like Barnsley’s fern?

» even # of solutions has interesting structure
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Summary

Even for the simplest class Sr theories, the punctures show an
amagzingly rich structure compared to the ' = 2 case.

still lots of questions

v

quantitative measure for complexity
connection to spin chain

v

v

statistical properties of solutions

v

are the characteristic quantities for a puncture
can we do more for N > 1, e.g. large N limit AdS/CFT

v
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