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Theories of class S [Gaiotto, 2012]

6D N = (2,0) SCFT
I IIB on R5,1 × C2/Γ , Γ ⊂ SU(2)→ ADE-classification [Witten, 1995]

I N M5-branes in flat space (AN ) [Strominger, 1996]
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Constrains on punctures

t

S1

I compactify 6D N = (2,0) on S1

I 5D N=2 gauge theory with matter in bifundamental of G

I maximally SUSY puncture→ 1/2 BPS equations for

Σ(t) =
Σ

t
Q(t) =

Q
t

Q̃(t) = 0

(in terms of N=1 4D superfields)

I results in Nahm pole equations [Nahm, 1980]

[Σ,Q] = Q [Q,Q†] = Σ

I Σ, Q, Q† are representations of su(2)
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¿ Generalization to N=1 ?
I 6D N = (1,0) SCFT

I compactification Σ with punctures→ 4D N=1 SCFTs [Razamat, Vafa, and

Zafrir, 2016]

Challenges

I much more 6D N = (1,0) than N = (2,0) SCFTs [Heckman, Morrison,

and Vafa, 2014]

I less constrained by SUSY
...
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¿ Generalization to N=1 ?

I use “simple” 6D N=(1,0) SCFT

N M5-branes probing ADE-singularity C2/Γ

I try to classify all punctures [Heckman, Jefferson,

Rudelius, and Vafa, 2016]

I harder than you might think

I 6D N = (1,0) SCFT
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Theories of Class SΓ. . . [Heckman, Jefferson, Rudelius, and Vafa, 2016]

I stack of N M5-branes probing ADE-singularity C2/Γ

I compactification on S1 → 5D quiver gauge theory

I organized according to extended Dynkin diagrams
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I stack of N M5-branes probing ADE-singularity C2/Γ

I compactification on S1 → 5D quiver gauge theory

I organized according to extended Dynkin diagrams

N

N . . . N
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D̂k

N 2N 3N 2N N

2N

NÊ6

similar for Ê7 and Ê8
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. . . and their punctures

I again, maximally SUSY punctures→ 1/2 BPS equations for

Σ(t) =
Σ

t
Q(t) =

Q
t

Q̃(t) =
Q̃
t

(in terms of N=1 4D superfields in covering space)

I results in generalized Nahm pole equations
[Heckman, Jefferson, Rudelius,

and Vafa, 2016]

[Σ,Q] = Q [Q, Q̃] = 0

[Σ, Q̃] = Q̃ [Q,Q†] + [Q̃, Q̃†] = Σ

plus invariance under Γ-action with

doublet
(

Q
Q̃

)
and singlet Σ
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A closer look at Âk quivers

I choose Γ 3 γ = diag(1N , ω1N , ω
21N , . . . , ω

k1N)

γQγ† = ωQ γQ̃γ† = ω−1Q̃ γΣγ† = Σ
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A closer look at Âk quivers

I choose Γ 3 γ = diag(1N , ω1N , ω
21N , . . . , ω

k1N)

γQγ† = ωQ γQ̃γ† = ω−1Q̃ γΣγ† = Σ

Σ =

p(1)
. . .

p(k)

 Q =


q(1)

. . .
q(k − 1)

q(k)

 Q̃ =


q̃(k)

q̃(1)
. . .

q̃(k − 1)



p(k−2)

p(k−1)p(k)

p(1)

p(2)
. . . . . .

q̃(k − 1)

q(k − 1)

q̃(1)

q(1)

q̃(k)

q(k)
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N=1 Âk quivers and a dynamical system

I rewrite gen. Nahm pole eq. in terms of q(i), q̃(i) and p(i)

[Q, Q̃] = 0 → q(i + 1)q̃(i + 1) = q(i)q̃(i)

[Q,Q†] + [Q̃, Q̃†] = Σ → x(i)− x(i − 1) = p(i)

[Σ,Q] = Q → q(i)
(

p(i)− p(i + 1)
)

= q(i)

[Σ, Q̃] = Q̃ → −q̃(i)
(

p(i)− p(i + 1)
)

= q̃(i)

with x(i) = q(i)q(i)∗ − q̃(i)q̃(i)∗

I Q is nilpotent, thus Qk=1k

k∏
i=1

q(i)=0 → q(i)q̃(i) = 0

I knowing x(i) is sufficient to get q(i) and q̃(i)
I discrete dynamical system

f :

(
p
x

)
(i + 1) =

(
1 0
1 1

)(
p
x

)
(i)− sgn x(i)

I choose x(1), p(1) and all other x(i), p(i) are fixed1
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N=1 Âk quivers and a dynamical system

I rewrite gen. Nahm pole eq. in terms of q(i), q̃(i) and p(i)

[Q, Q̃] = 0 → q(i + 1)q̃(i + 1) = q(i)q̃(i)

[Q,Q†] + [Q̃, Q̃†] = Σ → x(i)− x(i − 1) = p(i)

[Σ,Q] = Q → q(i)
(

p(i)− p(i + 1)
)

= q(i)

[Σ, Q̃] = Q̃ → −q̃(i)
(

p(i)− p(i + 1)
)

= q̃(i)

with x(i) = q(i)q(i)∗ − q̃(i)q̃(i)∗

I Q is nilpotent, thus Qk=1k

k∏
i=1

q(i)=0 → q(i)q̃(i) = 0

I knowing x(i) is sufficient to get q(i) and q̃(i)

I discrete dynamical system

f :

(
p
x

)
(i + 1) =

(
1 0
1 1

)(
p
x

)
(i)− sgn x(i)

I choose x(1), p(1) and all other x(i), p(i) are fixed1

Class S Class SΓ Dynamical system Summary
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(
1 0
1 1

)(
p
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)
(i)− sgn x(i)

I choose x(1), p(1) and all other x(i), p(i) are fixed1

1 In general p(i + 1) is unconstrained if x(i) = 0. We choose p(i + 1)=p(i) to formally extend the dynamical system
beyond this point.
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Periodic orbits

I punctures = periodic orbits of length k = |Γ|
I strongly depends on the initial condition, e.g.

I How to find the right initial conditions?
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A tree of solutions

I periodic orbits of type x(k) = 0 organized in tree structure
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and qualitative

I the tree of solutions is surprisingly complex

I any pattern? e.g. self similar like Barnsley’s fern?

I even # of solutions has interesting structure
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Summary

Even for the simplest class SΓ theories, the punctures show an
amazingly rich structure compared to the N = 2 case.

still lots of questions

I quantitative measure for complexity
I connection to spin chain
I statistical properties of solutions
I are the characteristic quantities for a puncture
I can we do more for N > 1, e.g. large N limit AdS/CFT
...
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