Stringy Geometries in the Context of Double Field Theory

Falk Haßler based on a project with Dieter Lüst and Olaf Hohm

> Arnold Sommerfeld Center LMU Munich

December 2, 2013

 \blacktriangleright string theory is a quantum gravity \rightarrow spacetime is not fixed

- $\blacktriangleright\,$ string theory is a quantum gravity \rightarrow spacetime is not fixed
- it should evolve from the theory itself

- \blacktriangleright string theory is a quantum gravity \rightarrow spacetime is not fixed
- it should evolve from the theory itself

PROBLEM:

"usual" implementations of string theory describe dynamic of strings in a certain **background** spacetime

- \blacktriangleright string theory is a quantum gravity \rightarrow spacetime is not fixed
- it should evolve from the theory itself

PROBLEM:

"usual" implementations of string theory describe dynamic of strings in a certain **background** spacetime

SOLUTION:

1. pick a spacetime compatible with string theory

- $\blacktriangleright\,$ string theory is a quantum gravity \rightarrow spacetime is not fixed
- it should evolve from the theory itself

PROBLEM:

"usual" implementations of string theory describe dynamic of strings in a certain **background** spacetime

SOLUTION:

- 1. pick a spacetime compatible with string theory
- 2. use it as background

- $\blacktriangleright\,$ string theory is a quantum gravity \rightarrow spacetime is not fixed
- it should evolve from the theory itself

PROBLEM:

"usual" implementations of string theory describe dynamic of strings in a certain **background** spacetime

SOLUTION:

- 1. pick a spacetime compatible with string theory
- 2. use it as background
- 3. describe strings moving in the background

How to choose such a background?

- How to choose such a background?
- Is (are) there one, ten, hunderts or billions of them?

- How to choose such a background?
- Is (are) there one, ten, hunderts or billions of them?

- How to choose such a background?
- Is (are) there one, ten, hunderts or billions of them?

1. parameterize "shape" of background

- How to choose such a background?
- Is (are) there one, ten, hunderts or billions of them?

- 1. parameterize "shape" of background
- 2. assign energy to each background

- How to choose such a background?
- Is (are) there one, ten, hunderts or billions of them?

- 1. parameterize "shape" of background
- 2. assign energy to each background
- 3. find minima

- How to choose such a background?
- Is (are) there one, ten, hunderts or billions of them?

- 1. parameterize "shape" of background
- 2. assign energy to each background
- 3. find minima

10⁵⁰⁰ backgrounds [2, 3]

Iow engery effective theory for (super) string theory

- Iow engery effective theory for (super) string theory
- here the NS/NS sector only

$$S_{
m NS} = \int {
m d}^D x \, \sqrt{g} e^{-2\phi} \left({\cal R} + 4 \partial_\mu \phi \partial^\mu \phi - rac{1}{12} H_{\mu
u
ho} H^{\mu
u
ho}
ight)$$

- Iow engery effective theory for (super) string theory
- here the NS/NS sector only

$$\mathcal{S}_{\mathrm{NS}} = \int \mathrm{d}^D x \, \sqrt{g} e^{-2\phi} \left(\mathcal{R} + 4 \partial_\mu \phi \partial^\mu \phi - rac{1}{12} \mathcal{H}_{\mu
u
ho} \mathcal{H}^{\mu
u
ho}
ight)$$

Einstein-Hilbert like part = general relativity

- Iow engery effective theory for (super) string theory
- here the NS/NS sector only

$$S_{
m NS} = \int {
m d}^D x \, \sqrt{g} e^{-2\phi} \left({\cal R} + 4 \partial_\mu \phi \partial^\mu \phi - rac{1}{12} H_{\mu
u
ho} H^{\mu
u
ho}
ight)$$

- Einstein-Hilbert like part = general relativity
- 2-form gauge field $B_{\mu\nu}$ with

- Iow engery effective theory for (super) string theory
- here the NS/NS sector only

$$S_{
m NS} = \int {
m d}^D x \, \sqrt{g} e^{-2\phi} \left({\cal R} + 4 \partial_\mu \phi \partial^\mu \phi - rac{1}{12} H_{\mu
u
ho} H^{\mu
u
ho}
ight)$$

- Einstein-Hilbert like part = general relativity
- 2-form gauge field $B_{\mu\nu}$ with

• field strength
$$H_{\mu\nu\rho} = \partial_{[\mu}B_{\nu\rho]}$$

- Iow engery effective theory for (super) string theory
- here the NS/NS sector only

$$S_{
m NS} = \int {
m d}^D x \, \sqrt{g} e^{-2\phi} \left({\cal R} + 4 \partial_\mu \phi \partial^\mu \phi - rac{1}{12} H_{\mu
u
ho} H^{\mu
u
ho}
ight)$$

- Einstein-Hilbert like part = general relativity
- 2-form gauge field $B_{\mu\nu}$ with

• field strength
$$H_{\mu\nu\rho} = \partial_{[\mu}B_{\nu\rho]}$$

 \sim Einstein-Maxwell theory \rightarrow point particles

- Iow engery effective theory for (super) string theory
- here the NS/NS sector only

$$S_{
m NS} = \int {
m d}^D x \, \sqrt{g} e^{-2\phi} \left({\cal R} + 4 \partial_\mu \phi \partial^\mu \phi - rac{1}{12} H_{\mu
u
ho} H^{\mu
u
ho}
ight)$$

- Einstein-Hilbert like part = general relativity
- 2-form gauge field $B_{\mu\nu}$ with

• field strength
$$H_{\mu\nu\rho} = \partial_{[\mu}B_{\nu\rho]}$$

 \sim Einstein-Maxwell theory \rightarrow point particles

backgrounds solve S_{NS}'s field equations

general relativity: spacetime = smooth manifold

fields are connected by gauge transformations

general relativity: spacetime = smooth manifold

fields are connected by gauge transformations

- fields are connected by gauge transformations
- geometric twists are possible

- fields are connected by gauge transformations
- geometric twists are possible

- fields are connected by gauge transformations
- geometric twists are possible

- fields are connected by gauge transformations
- geometric twists are possible

- fields are connected by gauge transformations
- geometric twists are possible

- fields are connected by gauge transformations
- geometric twists are possible

- fields are connected by gauge transformations
- geometric twists are possible

- fields are connected by gauge transformations
- geometric twists are possible

- fields are connected by gauge transformations
- geometric twists are possible

- fields are connected by gauge transformations
- geometric twists are possible

- fields are connected by gauge transformations
- geometric twists are possible

- fields are connected by gauge transformations
- geometric twists are possible

- fields are connected by gauge transformations
- geometric twists are possible

- fields are connected by gauge transformations
- geometric twists are possible

- fields are connected by gauge transformations
- geometric twists are possible

 \blacktriangleright closed strings also wind around the torus \rightarrow T-duality

new interesting properties like non-commutativity

- new interesting properties like non-commutativity
- compactifications lead to gauged SUGRA

- new interesting properties like non-commutativity
- compactifications lead to gauged SUGRA
 - moduli stabilization

- new interesting properties like non-commutativity
- compactifications lead to gauged SUGRA
 - moduli stabilization
 - effective cosmological constant

- new interesting properties like non-commutativity
- compactifications lead to gauged SUGRA
 - moduli stabilization
 - effective cosmological constant
 - spontaneous SUSY breaking

- new interesting properties like non-commutativity
- compactifications lead to gauged SUGRA
 - moduli stabilization
 - effective cosmological constant
 - spontaneous SUSY breaking

consider both, winding and momentum mode of string

- consider both, winding and momentum mode of string
- doubling of coordinates $D \rightarrow 2D$

- consider both, winding and momentum mode of string
- doubling of coordinates $D \rightarrow 2D$

$$S_{\rm DFT} = \int {\rm d}^{2D} X \, e^{-2\phi'} \mathcal{R}$$

- consider both, winding and momentum mode of string
- doubling of coordinates $D \rightarrow 2D$

$$X^{M} = \begin{pmatrix} \tilde{x}_{i} & x^{i} \end{pmatrix}$$

 $S_{\text{DFT}} = \int d^{2D} X e^{-2\phi'} \mathcal{R}$

- consider both, winding and momentum mode of string
- doubling of coordinates $D \rightarrow 2D$

- consider both, winding and momentum mode of string
- doubling of coordinates $D \rightarrow 2D$

- consider both, winding and momentum mode of string
- doubling of coordinates $D \rightarrow 2D$

$$X^{M} = \begin{pmatrix} \tilde{x}_{i} & x^{i} \end{pmatrix} \qquad \phi' = \phi - \frac{1}{2} \log \sqrt{g}$$

$$\partial_{M} = \begin{pmatrix} \tilde{\partial}^{i} & \partial_{i} \end{pmatrix} \qquad S_{\text{DFT}} = \int d^{2D} X e^{-2\phi' \mathcal{R}}$$

$$\mathcal{R} = 4\mathcal{H}^{MN} \partial_{M} \phi' \partial_{N} \phi' - \partial_{M} \partial_{N} \mathcal{H}^{MN} - 4\mathcal{H}^{MN} \partial_{M} \phi' \partial_{N} \phi' + 4\partial_{M} \mathcal{H}^{MN} \partial_{N} \phi'$$

$$+ \frac{1}{8} \mathcal{H}^{MN} \partial_{M} \mathcal{H}^{KL} \partial_{N} \mathcal{H}_{KL} - \frac{1}{2} \mathcal{H}^{MN} \partial_{N} \mathcal{H}^{KL} \partial_{L} \mathcal{H}_{MK}$$

- consider both, winding and momentum mode of string
- doubling of coordinates $D \rightarrow 2D$

$$X^{M} = (\tilde{x}_{i} \quad x^{i}) \qquad \phi' = \phi - \frac{1}{2} \log \sqrt{g}$$

$$\partial_{M} = (\tilde{\partial}^{i} \quad \partial_{i}) \qquad S_{DFT} = \int d^{2D} X e^{-2\phi' \mathcal{R}}$$

$$\mathcal{R} = 4\mathcal{H}^{MN} \partial_{M} \phi' \partial_{N} \phi' - \partial_{M} \partial_{N} \mathcal{H}^{MN} - 4\mathcal{H}^{MN} \partial_{M} \phi' \partial_{N} \phi' + 4\partial_{M} \mathcal{H}^{MN} \partial_{N} \phi'$$

$$+ \frac{1}{8} \mathcal{H}^{MN} \partial_{M} \mathcal{H}^{KL} \partial_{N} \mathcal{H}_{KL} - \frac{1}{2} \mathcal{H}^{MN} \partial_{N} \mathcal{H}^{KL} \partial_{L} \mathcal{H}_{MK}$$

$$\mathcal{H}^{MN} = \begin{pmatrix} g_{ij} - B_{ik} g^{kl} B_{lj} & -B_{ik} g^{kj} \\ g^{ik} B_{kj} & g^{ij} \end{pmatrix}$$

generalized Lie derivative

$$\begin{aligned} \mathcal{L}_{\xi} \mathcal{H}^{MN} &= \xi^{P} \partial_{P} \mathcal{H}^{MN} + (\partial^{M} \xi_{P} - \partial_{P} \xi^{M}) \mathcal{H}^{PN} + (\partial^{N} \xi_{P} - \partial_{P} \xi^{N}) \mathcal{H}^{MP} \\ \mathcal{L}_{\xi} \phi' &= \xi^{M} \partial_{M} \phi' + \frac{1}{2} \partial_{M} \xi^{M} \end{aligned}$$

- generalized Lie derivative combines
 - 1. diffeomorphisms

$$\begin{aligned} \mathcal{L}_{\xi} \mathcal{H}^{MN} &= \xi^{P} \partial_{P} \mathcal{H}^{MN} + (\partial^{M} \xi_{P} - \partial_{P} \xi^{M}) \mathcal{H}^{PN} + (\partial^{N} \xi_{P} - \partial_{P} \xi^{N}) \mathcal{H}^{MP} \\ \mathcal{L}_{\xi} \phi' &= \xi^{M} \partial_{M} \phi' + \frac{1}{2} \partial_{M} \xi^{M} \end{aligned}$$

generalized Lie derivative combines

diffeomorphisms
 B-field gauge transformations

$$\begin{aligned} \mathcal{L}_{\xi}\mathcal{H}^{MN} &= \xi^{P}\partial_{P}\mathcal{H}^{MN} + (\partial^{M}\xi_{P} - \partial_{P}\xi^{M})\mathcal{H}^{PN} + (\partial^{N}\xi_{P} - \partial_{P}\xi^{N})\mathcal{H}^{MP} \\ \mathcal{L}_{\xi}\phi' &= \xi^{M}\partial_{M}\phi' + \frac{1}{2}\partial_{M}\xi^{M} \end{aligned}$$

- generalized Lie derivative combines
 - 1. diffeomorphisms

- $\}$ available in SUGRA
- ameomorphisms
 B-field gauge transformations
- **3.** β -field gauge transformations

$$\begin{split} \mathcal{L}_{\xi}\mathcal{H}^{MN} &= \xi^{P}\partial_{P}\mathcal{H}^{MN} + (\partial^{M}\xi_{P} - \partial_{P}\xi^{M})\mathcal{H}^{PN} + (\partial^{N}\xi_{P} - \partial_{P}\xi^{N})\mathcal{H}^{MP} \\ \mathcal{L}_{\xi}\phi' &= \xi^{M}\partial_{M}\phi' + \frac{1}{2}\partial_{M}\xi^{M} \end{split}$$

- generalized Lie derivative combines

 - diffeomorphisms
 B-field gauge transformations
 - **3.** β -field gauge transformations

$$\begin{split} \mathcal{L}_{\xi}\mathcal{H}^{MN} &= \xi^{P}\partial_{P}\mathcal{H}^{MN} + (\partial^{M}\xi_{P} - \partial_{P}\xi^{M})\mathcal{H}^{PN} + (\partial^{N}\xi_{P} - \partial_{P}\xi^{N})\mathcal{H}^{MP} \\ \mathcal{L}_{\xi}\phi' &= \xi^{M}\partial_{M}\phi' + \frac{1}{2}\partial_{M}\xi^{M} \end{split}$$

• closure of this algebra needs $\mathcal{L}_{\xi_1}\mathcal{L}_{\xi_2} - \mathcal{L}_{\xi_2}\mathcal{L}_{\xi_1} = \mathcal{L}_{\xi_3}$ with $\xi_3 = [\xi_1, \xi_2]_C$ (C-bracket)

- generalized Lie derivative combines

 - diffeomorphisms
 B-field gauge transformations
 - **3.** β -field gauge transformations

$$\begin{split} \mathcal{L}_{\xi}\mathcal{H}^{MN} &= \xi^{P}\partial_{P}\mathcal{H}^{MN} + (\partial^{M}\xi_{P} - \partial_{P}\xi^{M})\mathcal{H}^{PN} + (\partial^{N}\xi_{P} - \partial_{P}\xi^{N})\mathcal{H}^{MP} \\ \mathcal{L}_{\xi}\phi' &= \xi^{M}\partial_{M}\phi' + \frac{1}{2}\partial_{M}\xi^{M} \end{split}$$

- ► closure of this algebra needs L_{ξ1}L_{ξ2} L_{ξ2}L_{ξ1} = L_{ξ3} with $\xi_3 = [\xi_1, \xi_2]_C$ (C-bracket)
- only possible when strong constraint holds

$$\partial_M\partial^M\cdot=0$$

- generalized Lie derivative combines

 - diffeomorphisms
 B-field gauge transformations
 - **3.** β -field gauge transformations

$$\begin{split} \mathcal{L}_{\xi}\mathcal{H}^{MN} &= \xi^{P}\partial_{P}\mathcal{H}^{MN} + (\partial^{M}\xi_{P} - \partial_{P}\xi^{M})\mathcal{H}^{PN} + (\partial^{N}\xi_{P} - \partial_{P}\xi^{N})\mathcal{H}^{MP} \\ \mathcal{L}_{\xi}\phi' &= \xi^{M}\partial_{M}\phi' + \frac{1}{2}\partial_{M}\xi^{M} \end{split}$$

- closure of this algebra needs $\mathcal{L}_{\xi_1}\mathcal{L}_{\xi_2} \mathcal{L}_{\xi_2}\mathcal{L}_{\xi_1} = \mathcal{L}_{\xi_3}$ with $\xi_3 = [\xi_1, \xi_2]_C$ (C-bracket)
- only possible when strong constraint holds

$$\partial_M\partial^M\cdot=0$$

▶ trivial implementation of SC $\tilde{\partial}_{i} = 0 \rightarrow \text{DFT} = \text{SUGRA}$
string theory

Scherk-Schwarz compactification [9] or a tool to construct backgrounds and fluctuations

- **1.** Homogenious space in 2(D-d) dimensions
 - space "looks" at every point the same

- **1.** Homogenious space in 2(D-d) dimensions
 - space "looks" at every point the same
 - ▶ 2(D-d) linear independent Killing vector K_l^J

$$\mathcal{L}_{\mathcal{K}_{_{I}}{}^{J}}\mathcal{H}^{MN}=0 \hspace{0.5cm} \text{and} \hspace{0.5cm} \mathcal{L}_{\mathcal{K}_{_{I}}{}^{J}}\phi'=0$$

- **1.** Homogenious space in 2(D d) dimensions
 - space "looks" at every point the same
 - ▶ 2(D-d) linear independent Killing vector K_{I}^{J}

$$\mathcal{L}_{\mathcal{K}_{l}^{J}}\mathcal{H}^{MN}=0 \hspace{1mm} \text{and} \hspace{1mm} \mathcal{L}_{\mathcal{K}_{l}^{J}}\phi'=0$$

• infinitesimal translations $\mathcal{L}_{K_{l}J}$ form group G_{L}

- **1.** Homogenious space in 2(D-d) dimensions
 - space "looks" at every point the same
 - ▶ 2(D-d) linear independent Killing vector K_{I}^{J}

$$\mathcal{L}_{\mathcal{K}_{l}^{J}}\mathcal{H}^{MN}=0 \quad \text{and} \quad \mathcal{L}_{\mathcal{K}_{l}^{J}}\phi'=0$$

- infinitesimal translations $\mathcal{L}_{K,J}$ form group G_{L}
- 2. Gauge transformations
 - map space to itself by

$$\mathcal{L}_{U_N{}^M}\mathcal{H}^{IJ} = -\mathcal{F}_{IML}U_N{}^M\mathcal{H}^{LJ} - \mathcal{F}_{JML}U_N{}^M\mathcal{H}^{IL}$$

- **1.** Homogenious space in 2(D-d) dimensions
 - space "looks" at every point the same
 - ▶ 2(D-d) linear independent Killing vector K_{I}^{J}

$$\mathcal{L}_{\mathcal{K}_{l}^{J}}\mathcal{H}^{MN}=0 \quad \text{and} \quad \mathcal{L}_{\mathcal{K}_{l}^{J}}\phi'=0$$

- infinitesimal translations $\mathcal{L}_{K_{L}^{J}}$ form group G_{L}
- 2. Gauge transformations
 - map space to itself by

$$\mathcal{L}_{U_N{}^M}\mathcal{H}^{IJ} = -\mathcal{F}_{IML}U_N{}^M\mathcal{H}^{LJ} - \mathcal{F}_{JML}U_N{}^M\mathcal{H}^{IL}$$

► infinitesimal translations $\mathcal{L}_{U_N^M}$ form group G_R

- **1.** Homogenious space in 2(D-d) dimensions
 - space "looks" at every point the same
 - ▶ 2(D-d) linear independent Killing vector K_{I}^{J}

$$\mathcal{L}_{\mathcal{K}_{l}^{J}}\mathcal{H}^{MN}=0 \quad \text{and} \quad \mathcal{L}_{\mathcal{K}_{l}^{J}}\phi'=0$$

- infinitesimal translations $\mathcal{L}_{K,J}$ form group G_{L}
- 2. Gauge transformations
 - map space to itself by

$$\mathcal{L}_{U_N{}^M}\mathcal{H}^{IJ} = -\mathcal{F}_{IML}U_N{}^M\mathcal{H}^{LJ} - \mathcal{F}_{JML}U_N{}^M\mathcal{H}^{IL}$$

- infinitesimal translations $\mathcal{L}_{U_{M}}^{M}$ form group G_{R}
- structure coefficients *F*_{IJK} = covariant fluxes

- **1.** Homogenious space in 2(D-d) dimensions
 - space "looks" at every point the same
 - ▶ 2(D-d) linear independent Killing vector K_{I}^{J}

$$\mathcal{L}_{\mathcal{K}_{l}^{J}}\mathcal{H}^{MN}=0 \quad \text{and} \quad \mathcal{L}_{\mathcal{K}_{l}^{J}}\phi'=0$$

- infinitesimal translations $\mathcal{L}_{K,J}$ form group G_{L}
- 2. Gauge transformations
 - map space to itself by

$$\mathcal{L}_{U_N{}^M}\mathcal{H}^{IJ} = -\mathcal{F}_{IML}U_N{}^M\mathcal{H}^{LJ} - \mathcal{F}_{JML}U_N{}^M\mathcal{H}^{IL}$$

- infinitesimal translations $\mathcal{L}_{U_{M}}^{M}$ form group G_{R}
- structure coefficients *F*_{IJK} = covariant fluxes
- closure of $G_{
 m R}
 ightarrow$ constraints on ${\cal F}_{IJK}$

DFT action + Scherk-Schwarz ansatz gives rise to

$$\begin{split} S_{\rm eff} &= \int \mathrm{d}x^{(D-d)} \sqrt{-g} e^{-2\phi} \Big(\mathcal{R} + 4 \partial_\mu \phi \partial^\mu \phi - \frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} \\ &- \frac{1}{4} \mathcal{H}_{MN} F^{M\mu\nu} F^N_{\ \mu\nu} - \frac{1}{12} G_{\mu\nu\rho} G^{\mu\nu\rho} + \frac{1}{8} D_\mu \mathcal{H}_{MN} D^\mu \mathcal{H}^{MN} - V \Big) \end{split}$$

DFT action + Scherk-Schwarz ansatz gives rise to

$$\begin{split} S_{\rm eff} &= \int \mathrm{d}x^{(D-d)} \sqrt{-g} e^{-2\phi} \Big(\mathcal{R} + 4 \partial_\mu \phi \partial^\mu \phi - \frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} \\ &- \frac{1}{4} \mathcal{H}_{MN} F^{M\mu\nu} F^N_{\ \mu\nu} - \frac{1}{12} G_{\mu\nu\rho} G^{\mu\nu\rho} + \frac{1}{8} D_\mu \mathcal{H}_{MN} D^\mu \mathcal{H}^{MN} - V \Big) \end{split}$$

with scalar potential

DFT action + Scherk-Schwarz ansatz gives rise to

$$\begin{split} S_{\rm eff} &= \int \mathrm{d}x^{(D-d)} \sqrt{-g} e^{-2\phi} \Big(\mathcal{R} + 4 \partial_\mu \phi \partial^\mu \phi - \frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} \\ &- \frac{1}{4} \mathcal{H}_{MN} F^{M\mu\nu} F^N_{\ \mu\nu} - \frac{1}{12} G_{\mu\nu\rho} G^{\mu\nu\rho} + \frac{1}{8} D_\mu \mathcal{H}_{MN} D^\mu \mathcal{H}^{MN} - V \Big) \end{split}$$

with scalar potential

$$V = -\frac{1}{4} \mathcal{F}_{I}^{\ \ KL} \mathcal{F}_{JKL} \ \mathcal{H}^{IJ} + \frac{1}{12} \mathcal{F}_{IKM} \mathcal{F}_{JLN} \mathcal{H}^{IJ} \mathcal{H}^{KL} \mathcal{H}^{MN}$$

 maximally symmetric vacuum = Minkowski (no warping implemented yet)

DFT action + Scherk-Schwarz ansatz gives rise to

$$\begin{split} \mathcal{S}_{\mathrm{eff}} &= \int \mathrm{d}x^{(D-d)} \sqrt{-g} e^{-2\phi} \Big(\mathcal{R} + 4 \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{12} \mathcal{H}_{\mu\nu\rho} \mathcal{H}^{\mu\nu\rho} \\ &- \frac{1}{4} \mathcal{H}_{MN} \mathcal{F}^{M\mu\nu} \mathcal{F}^{N}_{\ \mu\nu} - \frac{1}{12} \mathcal{G}_{\mu\nu\rho} \mathcal{G}^{\mu\nu\rho} + \frac{1}{8} \mathcal{D}_{\mu} \mathcal{H}_{MN} \mathcal{D}^{\mu} \mathcal{H}^{MN} - \mathcal{V} \Big) \end{split}$$

with scalar potential

$$V = -\frac{1}{4} \mathcal{F}_{I}^{\ \ KL} \mathcal{F}_{JKL} \ \mathcal{H}^{IJ} + \frac{1}{12} \mathcal{F}_{IKM} \mathcal{F}_{JLN} \mathcal{H}^{IJ} \mathcal{H}^{KL} \mathcal{H}^{MN}$$

- maximally symmetric vacuum = Minkowski (no warping implemented yet)
- e.o.m for vacuum reduce to

$$0 = \mathcal{R}_{\mu
u}$$
, $V = 0$ and $\mathcal{K}^{MN} = rac{\delta V}{\delta \mathcal{H}_{MN}} \sim 0$

DFT action + Scherk-Schwarz ansatz gives rise to

$$\begin{split} S_{\rm eff} &= \int \mathrm{d}x^{(D-d)} \sqrt{-g} e^{-2\phi} \Big(\mathcal{R} + 4 \partial_\mu \phi \partial^\mu \phi - \frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} \\ &- \frac{1}{4} \mathcal{H}_{MN} F^{M\mu\nu} F^N_{\ \mu\nu} - \frac{1}{12} G_{\mu\nu\rho} G^{\mu\nu\rho} + \frac{1}{8} D_\mu \mathcal{H}_{MN} D^\mu \mathcal{H}^{MN} - V \Big) \end{split}$$

with scalar potential

$$V = -\frac{1}{4} \mathcal{F}_{I}^{\ \ KL} \mathcal{F}_{JKL} \ \mathcal{H}^{IJ} + \frac{1}{12} \mathcal{F}_{IKM} \mathcal{F}_{JLN} \mathcal{H}^{IJ} \mathcal{H}^{KL} \mathcal{H}^{MN}$$

- maximally symmetric vacuum = Minkowski (no warping implemented yet)
- e.o.m for vacuum reduce to

$$0 = \mathcal{R}_{\mu\nu}$$
, $V = 0$ and $\mathcal{K}^{MN} = \frac{\delta V}{\delta \mathcal{H}_{MN}} \sim 0$

additional constraints on covariant fluxes *F*_{IJK}

- covariant fluxes \mathcal{F}_{IJK} combine
 - 1. geometric fluxes f and H-flux (known form SUGRA)

- covariant fluxes \mathcal{F}_{IJK} combine
 - 1. geometric fluxes f and H-flux (known form SUGRA)
 - 2. non-geometric fluxes Q and R

- covariant fluxes \mathcal{F}_{IJK} combine
 - 1. geometric fluxes f and H-flux (known form SUGRA)
 - 2. non-geometric fluxes Q and R
- find fluxes which fulfill all constraint discussed so far

- covariant fluxes \mathcal{F}_{IJK} combine
 - 1. geometric fluxes f and H-flux (known form SUGRA)
 - 2. non-geometric fluxes Q and R
- find fluxes which fulfill all constraint discussed so far
- solution for D d = 3 (non-vanishing fluxes)

$$H_{123} = Q_1^{23} = H$$
 and $f_{31}^2 = f_{12}^3 = f$

- covariant fluxes *F*_{IJK} combine
 - 1. geometric fluxes f and H-flux (known form SUGRA)
 - 2. non-geometric fluxes Q and R
- find fluxes which fulfill all constraint discussed so far
- solution for D d = 3 (non-vanishing fluxes)

$$H_{123} = Q_1^{23} = H$$
 and $f_{31}^2 = f_{12}^3 = f$

For H ≠ 0 and f ≠ 0 this background (elliptic/elliptic) is genuinely non-geometric = not T-dual to a geometric background

- covariant fluxes *F*_{IJK} combine
 - 1. geometric fluxes f and H-flux (known form SUGRA)
 - 2. non-geometric fluxes Q and R
- find fluxes which fulfill all constraint discussed so far
- solution for D d = 3 (non-vanishing fluxes)

$$H_{123} = Q_1^{23} = H$$
 and $f_{31}^2 = f_{12}^3 = f$

- For H ≠ 0 and f ≠ 0 this background (elliptic/elliptic) is genuinely non-geometric = not T-dual to a geometric background
- its non-trivial Killing vector parameterize diffeomorphism, *B*- and β- gauge transformation at the same time

- covariant fluxes *F*_{IJK} combine
 - 1. geometric fluxes f and H-flux (known form SUGRA)
 - 2. non-geometric fluxes Q and R
- find fluxes which fulfill all constraint discussed so far
- solution for D d = 3 (non-vanishing fluxes)

$$H_{123} = Q_1^{23} = H$$
 and $f_{31}^2 = f_{12}^3 = f$

- For H ≠ 0 and f ≠ 0 this background (elliptic/elliptic) is genuinely non-geometric = not T-dual to a geometric background
- its non-trivial Killing vector parameterize diffeomorphism, *B*- and β- gauge transformation at the same time
- fluctuations around this background reproduce result on asym. orbifold (has to be check completely)

 "Terra incognita" of string theory landscape are non-geometric backgrounds

- "Terra incognita" of string theory landscape are non-geometric backgrounds
- usually used SUGRA can not describe them

"Terra incognita" of string theory landscape are

non-geometric backgrounds

- usually used SUGRA can not describe them
- one needs new concepts like Double Field Theory

"Terra incognita" of string theory landscape are

non-geometric backgrounds

- usually used SUGRA can not describe them
- one needs new concepts like Double Field Theory
 - handle winding and momentum modes on same footing

"Terra incognita" of string theory landscape are

non-geometric backgrounds

- usually used SUGRA can not describe them
- one needs new concepts like Double Field Theory
 - handle winding and momentum modes on same footing
 - unifies diffeomorphism and gauge transfromations
Summary and conclusions

"Terra incognita" of string theory landscape are

non-geometric backgrounds

- usually used SUGRA can not describe them
- one needs new concepts like Double Field Theory
 - handle winding and momentum modes on same footing
 - unifies diffeomorphism and gauge transfromations
- with generalization of Scherk-Schwarz ansatz it produces non-geometric flux background

Summary and conclusions

"Terra incognita" of string theory landscape are

non-geometric backgrounds

- usually used SUGRA can not describe them
- one needs new concepts like Double Field Theory
 - handle winding and momentum modes on same footing
 - unifies diffeomorphism and gauge transfromations
- with generalization of Scherk-Schwarz ansatz it produces non-geometric flux background

Closer studies of them will hopefully reveal new phenomena which need the interplay between winding and momentum.

Summary and conclusions

"Terra incognita" of string theory landscape are

non-geometric backgrounds

- usually used SUGRA can not describe them
- one needs new concepts like Double Field Theory
 - handle winding and momentum modes on same footing
 - unifies diffeomorphism and gauge transfromations
- with generalization of Scherk-Schwarz ansatz it produces non-geometric flux background

Closer studies of them will hopefully reveal new phenomena which need the interplay between winding and momentum.

watch out for our publication on the arXiv 1312.????

References I

- L. Susskind, "The Anthropic landscape of string theory," arXiv:hep-th/0302219 [hep-th].
- M. R. Douglas, "The Statistics of string / M theory vacua," JHEP 0305 (2003) 046, arXiv:hep-th/0303194 [hep-th].
- S. Ashok and M. R. Douglas, "Counting flux vacua," JHEP 0401 (2004) 060, arXiv:hep-th/0307049 [hep-th].
- C. M. Hull, "Doubled Geometry and T-Folds," JHEP 0707 (2007) 080, arXiv:hep-th/0605149 [hep-th].
- C. Hull and B. Zwiebach, "Double Field Theory," JHEP 0909 (2009) 099, arXiv:0904.4664 [hep-th].
- O. Hohm, C. Hull, and B. Zwiebach, "Generalized metric formulation of double field theory," JHEP 1008 (2010) 008, arXiv:1006.4823 [hep-th].

References II

- C. Hull and B. Zwiebach, "The Gauge algebra of double field theory and Courant brackets," JHEP 0909 (2009) 090, arXiv:0908.1792 [hep-th].
- O. Hohm and B. Zwiebach, "Large Gauge Transformations in Double Field Theory," JHEP 1302 (2013) 075, arXiv:1207.4198 [hep-th].
- J. Scherk and J. H. Schwarz, "How to Get Masses from Extra Dimensions," *Nucl.Phys.* **B153** (1979) 61–88.
- G. Aldazabal, W. Baron, D. Marques, and C. Nunez, "The effective action of Double Field Theory," *JHEP* **1111** (2011) **052**, arXiv:1109.0290 [hep-th].
- M. Grana and D. Marques, "Gauged Double Field Theory," JHEP 1204 (2012) 020, arXiv:1201.2924 [hep-th].