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» string theory is a quantum gravity — spacetime is not fixed
» it should evolve from the theory itself

PROBLEM:
“usual” implementations of string theory describe
dynamic of strings in a certain background spacetime

SOLUTION:

1. pick a spacetime compatible with string theory
2. use it as background
3. describe strings moving in the background
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..and the string theory landscape [1].

» How to choose such a background?
» |s (are) there one, ten, hunderts or billions of them?
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2. assign energy to
each background
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low engery effective theory for (super) string theory
here the NS/NS sector only
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Einstein-Hilbert like part = general relativity

v

2-form gauge field B, with

v

field strength Hy., = 9,8,

~ Einstein-Maxwell theory — point particles
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backgrounds solve Sys’s field equations
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Double Field Theory [5, 6] in a nutshell

» consider both, winding and momentum mode of string

» doubling of coordinates D — 2D
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Gauge transformations and the strong constraint [7, 8]

» generalized Lie derivative combines

1. diffeomorphisms } available in SUGRA
2. B-field gauge transformations

3. p-field gauge transformations
LHMN = ePoptMN 1 (0Mep — 0peMYHPN + (9Vep — apeNyHMP
Led! = Moy + Loy
» closure of this algebra needs L¢, L¢, — L¢,Le, = Le,
with &3 = [¢4, 2] (C-bracket)
» only possible when strong constraint holds

oM. = 0

» trivial implementation of SC ;- = 0 — DFT = SUGRA
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Scherk-Schwarz compactification [9] or
a tool to construct backgrounds and fluctuations
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1. Homogenious space in 2(D — d) dimensions

» space “looks” at every point the same
» 2(D — d) linear independent Killing vector K’

L HMN =0 and Lys¢' =0

» infinitesimal translations EK/J form group GL

2. Gauge transformations

» map space to itself by
Ly wHY = ~Fp UyMHY = Fon UyMH"

» infinitesimal translations EUNM form group Gg
» structure coefficients F;y = covariant fluxes
» closure of Ggr — constraints on Fj
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» DFT action + Scherk-Schwarz ansatz gives rise to
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with scalar potential
V = _%J:IKL'FJKL H/J + %IIKMFJLNHIJHKLHMN

» maximally symmetric vacuum = Minkowski
(no warping implemented yet)

» e.0.m for vacuum reduce to

0=Ruw, V=0 and K" =V ~0

» additional constraints on covariant fluxes Fj
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Covariant fluxes as classification tool

» covariant fluxes Fx combine
1. geometric fluxes f and H-flux (known form SUGRA)

2. non-geometric fluxes Q and R
» find fluxes which fulfill all constraint discussed so far
» solution for D — d = 3 (non-vanishing fluxes)
Hiz3=QB =H and 2 =1f,=f
» for H = 0 and f # 0 this background (elliptic/elliptic) is

genuinely non-geometric = not T-dual to a geometric
background

» its non-trivial Killing vector parameterize
diffeomorphism, B- and - gauge transformation
at the same time

» fluctuations around this background reproduce result on
asym. orbifold (has to be check completely)
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Summary and conclusions

» “Terra incognita” of string theory landscape are
non-geometric backgrounds

» usually used SUGRA can not describe them

» one needs new conecpts like Double Field Theory
» handle winding and momentum modes on same footing
» unifies diffeomorphism and gauge transfromations

» with generalization of Scherk-Schwarz ansatz it produces
non-geometric flux background

Closer studies of them will hopefully reveal new
phenomena which need the interplay between
winding and momentum.

» watch out for our publication on the arXiv 1312.77?7?7?
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