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String theory. . .

� string theory is a quantum gravity → spacetime is not fixed

� it should evolve from the theory itself

PROBLEM:
“usual” implementations of string theory describe
dynamic of strings in a certain background spacetime

SOLUTION:

1. pick a spacetime compatible with string theory
2. use it as background
3. describe strings moving in the background
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� Is (are) there one, ten, hunderts or billions of them?

1. parameterize “shape”
of background

2. assign energy to
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10500 backgrounds
[2, 3]
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SUGRA in a nutshell

� low engery effective theory for (super) string theory

� here the NS/NS sector only

SNS =

�
dD

x
√

ge
−2φ

�
R+ 4∂µφ∂µφ−

1
12

HµνρH
µνρ

�

� Einstein-Hilbert like part = general relativity

� 2-form gauge field Bµν with

� field strength Hµνρ = ∂[µBνρ]

∼ Einstein-Maxwell theory → point particles

� backgrounds solve SNS’s field equations
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Strings have a different perspective [4]:

� closed strings also wind around the torus → T-duality

circles with radius
R

and
1/R

are identical

� new interesting properties like non-commutativity
� compactifications lead to gauged SUGRA

� moduli stabilization
� effective cosmological constant
� spontaneous SUSY breaking
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Gauge transformations and the strong constraint [7, 8]

� generalized Lie derivative

1. diffeomorphisms
2. B-field gauge transformations
3. β-field gauge transformations

LξH
MN = ξP∂PH

MN + (∂MξP − ∂Pξ
M)HPN + (∂NξP − ∂Pξ

N)HMP

Lξφ
� = ξM∂Mφ� +

1
2
∂MξM

� closure of this algebra needs Lξ1Lξ2 − Lξ2Lξ1 = Lξ3

with ξ3 = [ξ1, ξ2]C (C-bracket)

� only possible when strong constraint holds

∂M∂M · = 0

� trivial implementation of SC ∂̃i · = 0 → DFT = SUGRA
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Scherk-Schwarz compactification [9] or
a tool to construct backgrounds and fluctuations
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Group manifold = Scherk-Schwarz ansatz in doubled coordinates

1. Homogenious space in 2(D − d) dimensions

� space “looks” at every point the same

� 2(D − d) linear independent Killing vector K J

I

L
K J

I

HMN = 0 and L
K J

I

φ� = 0

� infinitesimal translations L
K J

I

form group GL

2. Gauge transformations

� map space to itself by

L
U M

N

HIJ = −FIMLU M

N
HLJ − FJMLU M

N
HIL

� infinitesimal translations L
U M

N

form group GR

� structure coefficients FIJK = covariant fluxes
� closure of GR → constraints on FIJK
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Gauged SUGRA [10, 11] and its vaccua

� DFT action + Scherk-Schwarz ansatz gives rise to

Seff =

�
dx

(D−d)√
−ge

−2φ
�
R+ 4∂µφ∂µφ−

1
12

HµνρH
µνρ

−
1
4
HMNF

Mµν
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µν −

1
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GµνρG
µνρ +

1
8

DµHMND
µ
H

MN
− V

�

with scalar potential

V = −
1
4F

KL

I
F

JKL
HIJ + 1

12FIKMFJLNH
IJHKLHMN

� maximally symmetric vacuum = Minkowski
(no warping implemented yet)

� e.o.m for vacuum reduce to

0 = Rµν , V = 0 and KMN = δV

δHMN
∼ 0

� additional constraints on covariant fluxes FIJK
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Covariant fluxes as classification tool

� covariant fluxes FIJK combine
1. geometric fluxes f and H-flux (known form SUGRA)

2. non-geometric fluxes Q and R

� find fluxes which fulfill all constraint discussed so far

� solution for D − d = 3 (non-vanishing fluxes)

H123 = Q23
1 = H and f 2

31 = f 3
12 = f

� for H �= 0 and f �= 0 this background (elliptic/elliptic) is
genuinely non-geometric = not T-dual to a geometric
background

� its non-trivial Killing vector parameterize
diffeomorphism, B- and β- gauge transformation

at the same time

� fluctuations around this background reproduce result on
asym. orbifold (has to be check completely)
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Summary and conclusions

� “Terra incognita” of string theory landscape are

non-geometric backgrounds

� usually used SUGRA can not describe them
� one needs new conecpts like Double Field Theory

� handle winding and momentum modes on same footing
� unifies diffeomorphism and gauge transfromations

� with generalization of Scherk-Schwarz ansatz it produces
non-geometric flux background

Closer studies of them will hopefully reveal new
phenomena which need the interplay between

winding and momentum.

� watch out for our publication on the arXiv 1312.????
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