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I well-known example: fibered tours with H-flux

Hijk

torus with
H-flux

I we looked at the sources of these fluxes



How to find these interesting backgrounds?

1. geometric string theory background with fluxes
2. T-Duality along different directions

I well-known example: fibered tours with H-flux

Hijk

torus with
H-flux

I we looked at the sources of these fluxes



How to find these interesting backgrounds?

1. geometric string theory background with fluxes
2. T-Duality along different directions

I well-known example: fibered tours with H-flux

Hijk

torus with
H-flux

I we looked at the sources of these fluxes



How to find these interesting backgrounds?

1. geometric string theory background with fluxes
2. T-Duality along different directions

I well-known example: fibered tours with H-flux

Hijk f i
jk

Ti

torus with
H-flux

twisted torus with
geometric f -flux

I we looked at the sources of these fluxes



How to find these interesting backgrounds?

1. geometric string theory background with fluxes
2. T-Duality along different directions

I well-known example: fibered tours with H-flux

Hijk f i
jk Qij

k

Ti Tj

torus with
H-flux

twisted torus with
geometric f -flux

non-comm. T-fold
with Q-flux

I we looked at the sources of these fluxes



How to find these interesting backgrounds?

1. geometric string theory background with fluxes
2. T-Duality along different directions

I well-known example: fibered tours with H-flux

Hijk f i
jk Qij

k R ijk
Ti Tj Tk

torus with
H-flux

twisted torus with
geometric f -flux

non-comm. T-fold
with Q-flux

non-ass.
with R-flux

I we looked at the sources of these fluxes



How to find these interesting backgrounds?

1. geometric string theory background with fluxes
2. T-Duality along different directions

I well-known example: fibered tours with H-flux

Hijk f i
jk Qij

k R ijk

NS 5-brane KK monopol Q-brane R-brane

Ti Tj Tk

T1 T2 T3

torus with
H-flux

twisted torus with
geometric f -flux

non-comm. T-fold
with Q-flux

non-ass.
with R-flux

I we looked at the sources of these fluxes



How to find these interesting backgrounds?

1. geometric string theory background with fluxes
2. T-Duality along different directions

I well-known example: fibered tours with H-flux

Hijk f i
jk Qij

k R ijk

NS 5-brane KK monopol Q-brane R-brane

Ti Tj Tk

T1 T2 T3

torus with
H-flux

twisted torus with
geometric f -flux

non-comm. T-fold
with Q-flux

non-ass.
with R-flux

︸ ︷︷ ︸
new

I we looked at the sources of these fluxes



NS 5-brane

I brane charged under the Kalb-Ramond field B

uncompact︷ ︸︸ ︷ compact on torus y i ∼ y i + 2π︷ ︸︸ ︷
x0 x1 x2 x3 y1 y2 y3 y4 y5 y6

NS 5
⊗ ⊗ ⊗ ⊗ ⊗ ⊗

I 5 spatial directions along the brane
⊗

I domain wall in uncompactified space

ds2
NS5 =

∑
i

(dx i
‖)

2 + h(r)
∑

k

(dxk
⊥)

2 eφ =
√

h(r)

Hmnp = εmnpq∂qh(r)

I parameterized by harmonic function h
I solution of NS effective action
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Kaluza-Klein monopol

I T-Duality along y1 (isometry) with Buscher rules
(Buscher, 1987)

x0 x1 x2 x3 y y2 y3 y4 y5 y6⊗ ⊗ ⊗ ⊗ ⊗ ⊗

ds2
KK int =

∑
i=4,5,6

(dy i)2 +
1

h(r)

(
dy +

∑
i=2,3

Aidy i
)2

+ h(r)
∑

i=2,3

(dy i)2

I vanishing B-field and dilaton
I geometric background
I A2 and A3 components of one-form gauge field
I we choose gauge A3 = 0
I remaining component A2 (= By1,y2 of NS 5-brane)

is connected with h

∂y3A2 = ∂x3h
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I T-Duality along y1 and y2 (isometries)

x0 x1 x2 x3 y y ′ y3 y4 y5 y6⊗ ⊗ ⊗ ⊗ ⊗ ⊗

ds2
Qint =

∑
i=4,5,6

(dy i)2 +
h(r)

h(r)2 + A2
2

(dy2 + dy ′2) + h(r)(dy3)2

eφ =

√
h(r)

h(r)2 + A2
2

By ,y ′ = − A2

h(r)2 + A2
2

I non-geometric background:

A2(x3, y3) 6= A2(x3, y3 + 2π)

I solution of the NS effective action
I for h(r) = Qx3 we get T-fold with Q flux
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Field redefinition

I fields are not globally well defined

? how to evaluate integrals for compactification
! field redefinition (D. Andriod, O. Hohm, M. Larfors, D. Lüst, P. Patalong,2012)

(G̃−1 + β)−1 ≡ Ẽ−1 = E = G + B

ds̃2
Qint =

1
h(r)

(
dy2 + dy ′2

)
+ h(r)(dy3)2 +

∑
i=4,5,6

(dy i)2

eφ̃ =
1√
h(r)

βy ,y ′
= −A2(y3) and Qy ,y ′

3 = ∂y3βy ,y ′
= −∂x3h

I globally well defined
I solution of the refined NS action

S̃ =

∫
d10x

√
|G̃|e−2φ̃

(
R̃+ 4(∂φ̃)2 − 1

4
Q2
)

I simplifies calculations considerably
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(G̃−1 + β)−1 ≡ Ẽ−1 = E = G + B

ds̃2
Qint =

1
h(r)

(
dy2 + dy ′2

)
+ h(r)(dy3)2 +

∑
i=4,5,6

(dy i)2

eφ̃ =
1√
h(r)

βy ,y ′
= −A2(y3) and Qy ,y ′

3 = ∂y3βy ,y ′
= −∂x3h

I globally well defined
I solution of the refined NS action

S̃ =

∫
d10x

√
|G̃|e−2φ̃

(
R̃+ 4(∂φ̃)2 − 1

4
Q2
)

I simplifies calculations considerably



Field redefinition

I fields are not globally well defined
? how to evaluate integrals for compactification
! field redefinition (D. Andriod, O. Hohm, M. Larfors, D. Lüst, P. Patalong,2012)
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Backgrounds for IIA and IIB with fluxes

I backgrounds must be solutions of the NS action

I preserve maximal SUSY in non-compact dimensions

1. metric of background must have the form:

ds2 = e2A(y) ds2
4 + gijdy idy j

2. SU(3) (IIA) or SU(2) (IIB) group structure onM6

intersecting NS5-branes, KK-monopoles, Q-branes and R-branes
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4 intersecting NS 5-branes (IIA)
I intersecting branes via “harmonic superposition rules”

(A.A. Tseytlin, 1996)

I complete background is 3xD4, 1xD8 and 4xNS5
(C. Kounnas, D. Lust, P.M. Petropoulos, D. Tsimpis, 2007)

x0 x1 x2 x3 y1 y2 y3 y4 y5 y6

NS5
⊗ ⊗ ⊗ ⊗ ⊗ ⊗

NS5′
⊗ ⊗ ⊗ ⊗ ⊗ ⊗

NS5′′
⊗ ⊗ ⊗ ⊗ ⊗ ⊗

NS5′′′
⊗ ⊗ ⊗ ⊗ ⊗ ⊗

I h(r) = Hx3 according to “harmonic superposition rules”

Hy2,y4,y6 = Hy2,y5,y3 = Hy1,y6,y3 = Hy1,y5,y4 = H

I in near horizon limit x3 → 0 we get AdS4 × T6
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4 Q-branes (IIA)
I T-Duality along y1, y2, y3 and y4 (isometries)

x0 x1 x2 x3 y1 y2 y3 y4 y5 y6⊗ ⊗ ⊗ ⊗ ⊗ ⊗⊗ ⊗ ⊗ ⊗ ⊗ ⊗⊗ ⊗ ⊗ ⊗ ⊗ ⊗⊗ ⊗ ⊗ ⊗ ⊗ ⊗

I non-geometric configuration

I near horizon limit with x = 1 + Q2
(
(y5)2 + (y6)2

)

ds4Qint =
1
x

4∑
i=1

(dy i)2 +
∑

j=5,6

(dy j)2

−B24 = B13 =
Qy6

x
B14 = B23 =

Qy5

x
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Field redefinition leads to

I G̃ and β have the same form as g and B of 4 NS 5-branes

I globally well defined representation

I in near horizon limit: flat torus with four Q-fluxes

Q24
6 = −Q13

6 = −Q14
5 = −Q23

5 = Q ,

and IIA superpotential

WQ = Q24
6 ST1T2+Q23

5 T1T2U1+Q14
5 T1T2U2+Q13

6 T1T2U3
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1 H-flux, 1 Q-flux and 2 f -fluxes (IIA)

I T-Duality along y1 and y3

x0 x1 x2 x3 y1 y2 y3 y4 y5 y6

NS 5
⊗ ⊗ ⊗ ⊗ ⊗ ⊗

KK′
⊗ ⊗ ⊗ ⊗ ⊗ ⊗

Q′′
⊗ ⊗ ⊗ ⊗ ⊗ ⊗

KK′′′
⊗ ⊗ ⊗ ⊗ ⊗ ⊗

I non-geometric background
I BUT: field redefinition

(G̃−1 + β)−1 = G + B

does not give globally well defined G̃ and β

We need a more general field redefinition with the
corresponding fluxes and superpotentials!
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Conclusions

I Q- and R-branes are sources of non-geometric fluxes

I field redefinition is a powerful tool to handle these branes

I construction of various IIA and IIB background with
non-geometric fluxes by intersecting branes

I their superpotential can be used to stabilize moduli in 4D

I indication for new kind of field redefinition

When you are curious about Q- and R-branes,
you can have a look at arXiv:1303.1413 (F. Haßler, D. Lüst, 2013)
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