Einstein's Dream

Falk Hassler

Uniwersytet Wrocławski

The Edge of All We Know

10th April 2019: first image of a black hole (M87*)

Accretion Disk

Relativistic Jet -

Event Horizon

Singularity

Why all the fuss about the singularity?

- Everything that ever fell into the BH is compressed to a point, the singularity.
- General relativity breaks down and needs to be altered, but how?
- Penrose-Hawking singularity theorems: "Occurrence of singularities is inevitable in GR"

Why all the fuss about the singularity?

- Everything that ever fell into the BH is compressed to a point, the singularity.
- General relativity breaks down and needs to be altered, but how?
- Penrose-Hawking singularity theorems: "Occurrence of singularities is inevitable in GR"

2020

Special and General Relativity

- **>** speed of light c = cosmical speed limit
- mass-energy equivalence

 $E = mc^2$

Special and General Relativity

- speed of light c = cosmical speed limit
- mass-energy equivalence

 $E = mc^2$

- speed limit also applies for gravity
- \rightarrow energy cruves space and time
- → Einstein field equations

$$R_{\mu
u} - rac{1}{2} R \, g_{\mu
u} = rac{8\pi G}{c^4} T_{\mu
u}$$

Quantum Mechanics

- nothing is certain
- Heisenberg's uncertainty principle

$$\Delta x \cdot \Delta p \geq \frac{\hbar}{2}$$

Quantum Mechanics

nothing is certain

1

Heisenberg's uncertainty principle

$$\Delta x \cdot \Delta p \geq \frac{\hbar}{2}$$

- particle are decribed by wave function $\Psi(t, x)$
- governed by Schrödinger equation

$$i\hbar \frac{\partial}{\partial t} \Psi(t, x) = H \Psi(t, x)$$
s 2s 2p_x 2p_y 2p_z

Quantum Mechanics

- nothing is certain
- Heisenberg's uncertainty principle

$$\Delta x \cdot \Delta p \geq \frac{\hbar}{2}$$

- particle are decribed by wave function $\Psi(t, x)$
- governed by Schrödinger equation

$$i\hbar rac{\partial}{\partial t} \Psi(t,x) = H \Psi(t,x)$$

Quantum Field Theory

- particles can be created and annihilated (destroyed)
- interactions can be drawn as Feynman diagrams

Quantum Field Theory

- particles can be created and annihilated (destroyed)
- interactions can be drawn as Feynman diagrams

- virtual particles "borrow" energy from vacuum
- \rightarrow renormalisation

Quantum Field Theory

- particles can be created and annihilated (destroyed)
- interactions can be drawn as Feynman diagrams

- virtual particles "borrow" energy from vacuum
- \rightarrow renormalisation
- This is where the trouble starts!

GR is not renormalisable

quantum mechanics corrects (renormalises)
 Einstein field equations

$$R_{\mu\nu} - \frac{1}{2}R g_{\mu\nu} + \ldots = \frac{8\pi G}{c^4}T_{\mu\nu}$$

- happens for all fundamental forces
- ▶ but only for gravity ∞-many corrections
- → not applicable at
 - high energies
 small distances ~ 10⁻³⁵m

Is the singularity an artifact of an incomplete description?

Is the singularity an artifact of an incomplete description?

example Fermi theory of β -decay

Is the singularity an artifact of an incomplete description?

example Fermi theory of β -decay

My research is driven by:

- Can we resolve the singularity?
- Effects on the notion of space and time, the fabric of cosmos?
- What are observable consequences?

What do we learn from this new paradigm?

Abelian T-duality

point particle

Abelian T-duality

point particle

Abelian T-duality

point particle

only works for circles and <u>flat</u> tori

Future?

- Work on these topic is done here in Wrocław...
- ...and all over the world.
- SONATA BIS 11 grant

N A R O D O W E C E N T R U M N A U K I

- Work on these topic is done here in Wrocław...
- ...and all over the world.
- SONATA BIS 11 grant

N A R O D O W E C E N T R U M N A U K I

Thank you for your attention!