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Motivation: A problem ...

» Task: Show that the WZ-model has NV = 1 SUSY
» very hard in components
S = [adx* 0,00 " + Py + ... ]
0cp =€t
St = e + . ..
» much simpler in superspace
S=[dx* [d*0edT — [dx* [[ d6ZW(P) +h.c.]
=0+ 0+ 00F + ...
> we lean

extension of spacetime with fermionic coordinates 6
nonlinear realization of SUSY beomes linear
component action after integrating out # and aux. fields
allows to derive non-renormalization theorem for W(®)
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Motivation: ...and a related problem

» Task: Check r-symmetry of AdS3 xS? 7-deformation
» very hard with (modified) SUGRA fields

ds =

1 2 1402 y2 | (rP+1) 42 1 2
G (R L o L B A (B (e L

» much simpler in doubled space

24AB _ <5ab 0 > Fabe = _ns/zfabdédc
0 sa)° Fab, — 5ad sbe Sof fdef
» advantages

1. (modified) SUGRA field equations become algebraic
2. target space fields by contracting with gen. frame field
3. dualities between integrable deformations are manifest
4. naturally extents to the dilaton and the R/R sector
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Drinfeld double ¢

Definition: A Drinfeld double is a 2D-dimensional Lie group D,
whose Lie-algebra o

1. has an ad-invariant bilinear for (-, -) with signature (D, D)

2. admits the decomposition into two maximal isotropic
subalgebras g and §

> (17 t;) =Tacd, taeg and t?eg
0 62
> = = b
(Ta, Tg) = naB (52 0>
» [Ta, Tg] = Fag® T¢ with non-vanishing commutators

[ta, to] = FapCle  [ta, tP] = FPute — focPt°
[t2, l’b] _ ?abctc

> ad-invariance of (-, -) implies Fagc = Fiapc

Poisson-Lie T-duality
000



Biirfetd double g

Definition: A Brinfetd double is a 2D-dimensional Lie group D,
whose Lie-algebra o

1. has an ad-invariant bilinear for (-, -) with signature (D, D)

2. admits the decomposition into #we one maximal isotropic
subalgebras gand §

> (17 t;) =Tacd, taeg and t?eg
0 62
> = = b
(Ta, Tg) = naB (52 0>
» [Ta, Tg] = Fag® T¢ with non-vanishing commutators

[taa tb] = abctc + fébctc [ta; tb] = 7cbcatc - facbfC
[t2, l’b] _ ?abctc

> ad-invariance of (-, -) implies Fagc = Fiapc

Poisson-Lie T-duality
000



Poisson-Lie T-duality: 1. Definition imeik and severa, 1995]

» 2D o-model on target space M with action

S(E,M) = [ dzdz E;ox'Ox/
» E; = g; + Bj captures metric and two-from field on M
inverse of Ej is denoted as EY

> left invariant vector field v,' on G is the inverse transposed
of right invariant Maurer-Cartan form t,v3;dx’ = —dg g~'

> adjoint action of g € Gon ty € 0: Adg ta = gtag™" = MaBig

v

» analog for G

Definition: S(E, D/G) and S(E, D/G) are Poisson-Lie T-dual if
El'j _ ciMaC(MaeMbe + Sab)Mdedj
Eij = VCiMac(MaeMbe =+ Sab)Mbd‘N/dj

holds, where S@ is constant and invertible with the inverse S.

Poisson-Lie T-duality
o] le}



Poisson-Lie T-duality: 2. Properties

abelian T-d. G abelian and G abelian
G

» captures { non-abelian T-d. G non-abelian and abelian
(S|

» dual o-models related by canonical transformation
[Klim¢ik and Severa, 1995;Kliméik and Severa, 1996;Sfetsos, 1998]

— equivalent at the classical level

» preserves conformal invariance at one-loop
[Alekseev, Klimcik, and Tseytlin, 1996;;. . . ;Jurco and Vysoky, 2018]

> Poisson-Lie symmetry: L, Ej = —7%°,v pv/ . Ex E)
» 7-, 8- and \*-deformations admit Poisson-Lie symmetry

» What can we say about the R/R-sector?

Motivation Poisson-Lie T-duality Double Field Theory Application Summary
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Poisson-Lie T-duality: 2. Properties

abelian T-d. G abelian and G abelian
G

» captures { non-abelian T-d. G non-abelian and abelian
(S|

» dual o-models related by canonical transformation
[Klim¢ik and Severa, 1995;Kliméik and Severa, 1996;Sfetsos, 1998]

— equivalent at the classical level

» preserves conformal invariance at one-loop
[Alekseev, Klimcik, and Tseytlin, 1996;;. . . ;Jurco and Vysoky, 2018]

> Poisson-Lie symmetry: L, Ej = —7%°,v pv/ . Ex E)
» 7-, 8- and \*-deformations admit Poisson-Lie symmetry
2D o-model perspective

(modified) SUGRA perspective

» What can we say about the R/R-sector?

Poisson-Lie T-duality
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O(D,D) Majorana-WeyI spinors ON D [Hohm, Kwak, and Zwiebach, 2011,Hassler, 2018]

» [-matrices: {[a, T8} = 218
» chirality Mopy¢ With {T2pi1,Ta} =0
» charge conjugation C with CT4C~1 = (I'4)f

D
> spinor can be expressed as y = > chﬁ’?napraw-aqm

p=0
» @ = creation op. and ', = annihilation op. ({I'?, Ty} = 267)
> (M) =T, and |0) = vacuum (4/0) =0)
>  is chiral/anti-chiral if all C(P) are even/odd

» O(D,D) transformation in spinor representation
SolaSy' =Tg0Bs  OTHO =1

Motivation Poisson-Lie T-duality Double Field Theory Application Summary
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R/R sector of DFT on D [Haster, 2017]

action Sgr = %f d?9X (V) Sy YV

covariant derivative Yy = (MDa — 15MBCFagc — ATAF4) x

flat derivative Day = E5'9,

vV v.v Vv

left-invariant vector fields E,' constructed from
right-invariant Maurer-Cartan form T4EA, = —9,dd~', d € D
as EA/EBI = (5@

> density part F4 = Dalog |det(E5))|

» Y2 = 0 under SC (next slide)

» x is chiral (IIB) or anti-chiral (II1A)

» satisfies self duality condition

G=-KG with G=VYyxy and K=C'Sy

Double Field Theory
0e000000



Symmetries of the action

> Syr invariant for X'— X' + ¢AE, and

1. x = x+Lex and  HAB — HAB 4 LHAP
2. x = x+Lx and HAB - HAB | [ 1B

1. generalized diffeomorphisms
Lox = Vax + SVAtel™x + L Vathy

LeVA = BVgVA 4 (VAg — Vpe?) VB + wypeBuA
2. 2D-diffeomorphisms

Lex = E2Dax — 3(64Fa— Dat?)x  and  LeHAB = ¢CD 1B
3. global O(D,D) transformations (OA ;OB pnCP = nAB)

x = Sox and HAB - OALHCPOB,
» section condition (SC) for fi, f, with weights wy, ws

(Dafy — wiFafy)(DAf — woFAf) = 0

Double Field Theory
00@00000



SC solutions and Poisson-Lie T-duality [Hassler, 2018;HaBler, 2017]
» fix D physical coordinates x’ from X/ = (x’ x7> onD

such that n/ = E»/n*BEg! = ( 0 > — SC is solved
> fields and gauge parameter depend just on x’
» different SC solutions, relate them by symmetries of DFT
target space
d(X") = g(x"g(x") th=(t2 t) D/G
2D-diffeom. global O(D,D) PL-TD

Motivation Poisson-Lie T-duality Double Field Theory Application Summary
000 000 000@0000 o 0000



Equivalence to (m)SUGRA: 1. Generalized parallelizable spaces
fl

> generalized tangent space element V/ = (Vi V)
» generalized Lie derivative

L V= ¢logVI (g -0, V? with 0= (0 )

(Definition: A manifold M which admits a globally defined
generalized frame field E/(x') satisfying

1. EEAEB’ = FugCEL!
where F4gC are the structure constants of a Lie algebra b

w_ (0 &
2. EA nABEB —17/‘/ (5,: 0’)
/

is a generalized parallelizable space (M, ), EA).

> SC solution on D — gen. parallelizable space (D/G, §, EA7)

Double Field Theory
00008000



Equivalence to (m)SUGRA: 2. R/R field strengths Haser, 2017

see also [Y. Sakatani, S. Uehara, K. Yoshida, 2016; J. Sakamoto, Y. Sakatani, K. Yoshida, 2017]
» transport y to the generalized tangent space:

X = |det &4 1/2Szx (1% =g 'dg)

» same for covariant derivative
| det & 1/2S: Y x = (a—xﬁ) X with X;= ( ! >
SEFASE1 EJ=T" and §=T'5;

» X; vanishes if g is unimodular

> introduce field strength F = e?Sg (@ - Xﬁ) X

» and derivative d = e?Sg (3 — Xﬁ) Sg'e?

Motivation Poisson-Lie T-duality Double Field Theory Application
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Equivalence to m(SUGRA): 3. field equations & Bl

> DFT R/R field equations: V(KXY )y = 0
> rewrite them as:

dxdF)=0 »=C"'5;"
» puls Bianchi identity (Bl)
dF =0
» action on polyforms
d > d+HAN—-ZAN—1 with Z=d¢p+uyB-V
* < *

» matches the R/R sector of (m)SUGRA (A Tseytin, L wuit, 2016]

Motivation Poisson-Lie T-duality Double Field Theory Application Summary
000 000 00000000 o 0000



Restrictions on 7{ 45 and Y to admit Poisson-Lie Symmetry

Poisson-Lie T-duality (2D-diff.) o
> in general Hap(x') Hap(x'", x'7)

> X part not compatible with ansatz for SC solutions — avoid it

A doubled space (D, Hag, d) has Poisson-Lie symmetry iff
1. Lg'HAB =0 Vf — DAHBC =0
2. Lex=0 Y& — Dax=1Fa

» Bl for Poisson-Lie symmetric x is algebraic
Yx = 15FascTECx
» finding R/R solutions reduces to linear algebra

» same holds NS/NS sector
(here field equations are in general quadratic)

Double Field Theory
0O000000e



Application to integrable deformations

» starting point is solution to (m)CYBE
[Rx, Ryl = R ([Rx,y] + [x, Ry]) = —c[x. ¥]
» generalized metric after global O(D,D) very simple

24AB _ (581:; 62b>
» structure coefficients have non-trivial components

Fabe = Hs/zczfabdédm Faf =0, ,:azbc — 5ad5be§cffdefa Fabc — o
» field equations for NS/NS + R/R sector become linear

» Poisson-Lie T-dualities between various deformations are manifest

Application
[ ]



Summary

» DFT, PL-Symmetry and integrable deformations fit together nicely

> interpretation of doubled space does not require winding modes
anymore (phase space perspective instead)

> various interesting questions

>

vvyyVvyyy

implement coset spaces and dressing coset construction

fermionic sector and fermionic dualities

Drinfeld doubles — quantum groups — rich mathematical structure
new way to organized o’ corrections?

new way to construct non-geometric backgrounds?

branes in curved space [kimik, and Severa, 1996 (D-branes)] ?

» facilitates new applications

>
>
>

integrable deformations of 2D o-models
solution generating technique
explore underlying structure of AdS/CFT



Additional structure on the Drinfeld double

[Blumenhagen, Hassler, and Lust, 2015, Blumenhagen, Bosque, Hassler, and Lust, 2015]

> right invariant vector E,/ field on D is the inverse transposed of
left invariant Maurer-Cartan form t4E4,0X' = g~ 'dg

> two n-compatible, covariant derivatives’
. flat derivative

DaVE = E'9|VE — wFaVE,  Fp= Dalog |det(E®))|
2. convenient derivative
VaVE = DaVB + LFucBVC
» generalized metric Hag (w = 0)
Hag = H(ag), Hacn®PHps = 1as
> generalized dilaton d with e=29 scalar density of weight w = 1
» triple (D, H g, d) captures the doubled space of DFT

definitions here just for quantities with flat indices



Double Field Theory for (D Has, d) [Blumenhagen, Bosque, Hassler, and Lust, 2015]

see also [Vaisman, 2012; ;; ;...]

> action (Vad = — €29V 4e729)

Sks = /D dZDXe2d<;HCDVCHABVDHAB - %HABVBHCDVDHAC
— 2V 4dVEHAB + 41 BV 4dV gd + %FACDFBCD’HAB)
» 2D-diffeomorphisms
Le VA = ¢BDg VA + wDgeBVA
» global O(D,D) transformations
VA TAgVE with TALTBpnCP = B
» generalized diffeomorphisms
LeVA=¢BVgVA + (VAL — Ve VB + wVgeByvA
» section condition (SC)
n*BDy - Dg- =0



Symmetries of the action

» Ss invariant for X'— X' + ¢AE,! and

1. HAB - HAB L LHAB and e29 — 729 4 Lo
2. HMB 5 HAB + L HAP and e29 5 e 204 [e2d
object | gen.-diffeomorphisms 2D-diffeomorphisms global O(D,D)
Hapg | tensor scalar tensor
V ad | not covariant scalar 1-form
e~29 | scalar density (w=1)  scalar density (w=1) invariant
nag | invariant invariant invariant
Fag€ | invariant invariant tensor
E,' | invariant vector 1-form
Sns | invariant invariant invariant
SC | invariant invariant invariant
D, | not covariant covariant covariant
V 4 | not covariant covariant covariant

/

manifest
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