Taking Advantage of Poisson-Lie Symmetry

Falk Hassler

University of Oviedo

based on

18??.????

with

Saskia Demulder and Daniel Thompson

September 11th, 2018

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

Motivation: A problem ...

- ▶ Task: Show that the WZ-model has $\mathcal{N} = 1$ SUSY
- very hard in components

$$\begin{split} \mathcal{S} &= \int \textit{d} x^4 \left[\partial_\mu \phi \partial^\mu \phi^* + \overline{\psi} \partial \psi + \dots \right] \\ \delta_\epsilon \phi &= \overline{\epsilon} \psi \\ \delta_\epsilon \psi &= \partial \!\!\!\!/ \phi \epsilon + \dots \end{split}$$

much simpler in superspace

$$S = \int dx^4 \int d^4\theta \Phi \Phi^{\dagger} - \int dx^4 \left[\int d\theta^2 W(\Phi) + \text{h.c.} \right]$$

$$\Phi = \phi + \theta \psi + \theta \theta F + \dots$$

- we lean
 - 1. extension of spacetime with fermionic coordinates θ
 - 2. nonlinear realization of SUSY becomes linear
 - 3. component action after integrating out θ and aux. fields
 - 4. allows to derive non-renormalization theorem for $W(\Phi)$

Motivation: ... and a related problem

- ▶ Task: Check κ -symmetry of AdS₃×S³ η -deformation
- very hard with (modified) SUGRA fields

$$ds = \frac{1}{(r^2-1)(1+r^2\kappa^2)}dr^2 + \frac{1+\rho^2}{(\kappa^2\rho^2-1)}dt^2 + \frac{(r^2+1)}{1+r^2\kappa^2}dx^2 + \frac{1}{(1+\rho^2)(1-\kappa^2\rho^2)}d\rho^2 + \cdots$$

much simpler in doubled space

$$\mathcal{H}^{AB} = egin{pmatrix} \delta_{ab} & 0 \ 0 & \delta^{ab} \end{pmatrix}, \quad egin{pmatrix} F_{abc} = -\eta^{3/2} f_{ab}{}^{a} \delta_{dc} \ F^{ab}{}_{c} = \delta^{ad} \delta^{be} \delta_{cf} f_{de}{}^{f} \end{pmatrix}$$

- advantages
 - 1. (modified) SUGRA field equations become algebraic
 - 2. target space fields by contracting with gen. frame field
 - 3. dualities between integrable deformations are manifest
 - 4. naturally extents to the dilaton and the R/R sector

Outline

- 1. Motivation
- 2. Poisson-Lie T-duality/Symmetry
- 3. R/R sector of Double Field Theory on $\ensuremath{\mathcal{D}}$
- 4. Application to integrable deformations
- 5. Summary

Drinfeld double []

Definition: A **Drinfeld double** is a 2*D*-dimensional Lie group \mathcal{D} , whose Lie-algebra \mathfrak{d}

- 1. has an ad-invariant bilinear for $\langle \cdot, \cdot \rangle$ with signature (D, D)
- 2. admits the decomposition into two maximal isotropic subalgebras $\mathfrak g$ and $\tilde{\mathfrak g}$
- $lacksquare \left(t^a \quad t_a
 ight) = \mathcal{T}_{\mathcal{A}} \in \mathfrak{d} \;, \quad t_a \in \mathfrak{g} \quad ext{and} \quad t^a \in ilde{\mathfrak{g}}$
- $ightharpoonup [T_A, T_B] = F_{AB}{}^C T_C$ with non-vanishing commutators

$$[t_a, t_b] = f_{ab}{}^c t_c$$
 $[t_a, t^b] = \tilde{f}^{bc}{}_a t_c - f_{ac}{}^b t^c$
 $[t^a, t^b] = \tilde{f}^{ab}{}_c t^c$

▶ ad-invariance of $\langle \cdot, \cdot \rangle$ implies $F_{ABC} = F_{[ABC]}$

Drinfeld double II

Definition: A $\frac{\textbf{Drinfeld}}{\textbf{double}}$ double is a 2D-dimensional Lie group \mathcal{D} , whose Lie-algebra $\mathfrak d$

- 1. has an ad-invariant bilinear for $\langle \cdot, \cdot \rangle$ with signature (D, D)
- 2. admits the decomposition into two one maximal isotropic subalgebras $_{\widehat{g}}$ and $\widetilde{\mathfrak{g}}$
- $lacksquare \left(t^a \quad t_a
 ight) = \mathcal{T}_{\mathcal{A}} \in \mathfrak{d} \;, \quad t_a \in \mathfrak{g} \quad ext{and} \quad t^a \in ilde{\mathfrak{g}}$
- $ightharpoonup [T_A, T_B] = F_{AB}{}^C T_C$ with non-vanishing commutators

$$[t_a, t_b] = f_{ab}{}^c t_c + f'_{abc} t^c \qquad [t_a, t^b] = \tilde{f}^{bc}{}_a t_c - f_{ac}{}^b t^c$$
$$[t^a, t^b] = \tilde{f}^{ab}{}_c t^c$$

▶ ad-invariance of $\langle \cdot, \cdot \rangle$ implies $F_{ABC} = F_{[ABC]}$

Poisson-Lie T-duality: 1. Definition [Klimčík and Severa, 1995]

▶ 2D σ -model on target space M with action

$$S(E,M) = \int dz d\bar{z} \, E_{ij} \partial x^i \bar{\partial} x^j$$

- $ightharpoonup E_{ij} = g_{ij} + B_{ij}$ captures metric and two-from field on M
- ▶ inverse of E_{ij} is denoted as E^{ij}
- ▶ *left* invariant vector field $v_a{}^i$ on G is the inverse transposed of *right* invariant Maurer-Cartan form $t_a v^a{}_i dx^i = -dg g^{-1}$
- ▶ adjoint action of $g \in G$ on $t_A \in \mathfrak{d}$: $Ad_g t_A = gt_A g^{-1} = M_A{}^B t_B$
- analog for G

Definition: $S(E, \mathcal{D}/\tilde{G})$ and $S(\tilde{E}, \mathcal{D}/G)$ are **Poisson-Lie T-dual** if

$$E^{ij} = v_c{}^i M_a{}^c (M^{ae} M^b{}_e + S^{ab}) M_b{}^d v_d{}^j$$

 $\tilde{E}^{ij} = \tilde{v}^{ci} \tilde{M}^a{}_c (\tilde{M}_{ae} \tilde{M}_b{}^e + S_{ab}) \tilde{M}^b{}_d \tilde{v}^{dj}$

holds, where S^{ab} is constant and invertible with the inverse S_{ab} .

Poisson-Lie T-duality: 2. Properties

- dual σ-models related by canonical transformation [Klimčík and Severa, 1995;Klimčík and Severa, 1996;Sfetsos, 1998]
- → equivalent at the classical level
- ▶ preserves conformal invariance at one-loop [Alekseev, Klimcik, and Tseytlin, 1996;;...;Jurco and Vysoky, 2018]
- Poisson-Lie symmetry: $L_{v_a}E_{ij} = -\tilde{f}^{bc}{}_a v^k{}_b v^l{}_c E_{ik} E_{lj}$
- \blacktriangleright η -, β and λ^* -deformations admit Poisson-Lie symmetry

What can we say about the R/R-sector?

Poisson-Lie T-duality: 2. Properties

- dual σ-models related by canonical transformation [Klimčík and Severa, 1995;Klimčík and Severa, 1996;Sfetsos, 1998]
- → equivalent at the classical level
- ▶ preserves conformal invariance at one-loop [Alekseev, Klimcik, and Tseytlin, 1996;;...;Jurco and Vysoky, 2018]
- ▶ Poisson-Lie symmetry: $L_{v_a}E_{ij} = -\tilde{f}^{bc}{}_a v^k{}_b v^l{}_c E_{ik}E_{lj}$
- \blacktriangleright $\,\eta\text{-}$, $\beta\text{-}$ and $\lambda^*\text{-deformations}$ admit Poisson-Lie symmetry

2D σ -model perspective

(modified) SUGRA perspective

▶ What can we say about the R/R-sector?

$\mathbf{O}(D,D)$ Majorana-Weyl spinors on \mathcal{D} [Hohm, Kwak, and Zwiebach, 2011, Hassler, 2018]

- ► Γ-matrices: $\{\Gamma_A, \Gamma_B\} = 2\eta_{AB}$
- chirality Γ_{2D+1} with $\{\Gamma_{2D+1}, \Gamma_A\} = 0$
- ▶ charge conjugation C with $C\Gamma_A C^{-1} = (\Gamma_A)^{\dagger}$
- spinor can be expressed as $\chi=\sum\limits_{\rho=0}^{D}\frac{1}{\rho!2^{\rho/2}}C_{a_{1}...a_{\rho}}^{(\rho)}\Gamma^{a_{1}...a_{\rho}}|0\rangle$
- ightharpoonup Γ^a = creation op. and Γ_a = annihilation op. $(\{\Gamma^a, \Gamma_b\} = 2\delta^a_b)$
- $ightharpoonup (\Gamma^a)^\dagger = \Gamma_a ext{ and } |0\rangle = ext{vacuum } (\Gamma_a |0\rangle = 0)$
- $\triangleright \chi$ is chiral/anti-chiral if all $C^{(p)}$ are even/odd
- ▶ O(D,D) transformation in spinor representation

$$S_{\mathcal{O}}\Gamma_{A}S_{\mathcal{O}}^{-1} = \Gamma_{B}\mathcal{O}^{B}{}_{A} \qquad \mathcal{O}^{T}\eta\mathcal{O} = \eta$$

R/R sector of DFT on \mathcal{D} [Haßler, 2017]

- lacksquare action $S_{
 m RR}=rac{1}{4}\int d^{2d}X\,(
 abla\chi)^\dagger\,S_{\cal H}\,
 abla\chi$
- covariant derivative $\nabla \chi = \left(\Gamma^A D_A \frac{1}{12} \Gamma^{ABC} F_{ABC} \frac{1}{2} \Gamma^A F_A\right) \chi$
- ► flat derivative $D_A = E_A{}^I \partial_I$
- left-invariant vector fields $E_A{}^I$ constructed from right-invariant Maurer-Cartan form $T_A E^A{}_I = -\partial_I dd^{-1}$, $d \in \mathcal{D}$ as $E^A{}_I E_B{}^I = \delta^A_B$
- density part $F_A = D_A \log \left| \det(E^B_I) \right|$
- ightharpoonup ho = 0 under SC (next slide)
- $ightharpoonup \chi$ is chiral (IIB) or anti-chiral (IIA)
- satisfies self duality condition

$$G = -\mathcal{K}G$$
 with $G = \nabla \chi$ and $\mathcal{K} = C^{-1}S_{\mathcal{H}}$

Symmetries of the action

• $S_{R/R}$ invariant for $X^I \rightarrow X^I + \xi^A E_A{}^I$ and

1.
$$\chi \to \chi + \mathcal{L}_{\xi} \chi$$
 and $\mathcal{H}^{AB} \to \mathcal{H}^{AB} + \mathcal{L}_{\xi} \mathcal{H}^{AB}$
2. $\chi \to \chi + \mathcal{L}_{\xi} \chi$ and $\mathcal{H}^{AB} \to \mathcal{H}^{AB} + \mathcal{L}_{\xi} \mathcal{H}^{AB}$

1. generalized diffeomorphisms

$$\mathcal{L}_{\xi}\chi = \xi^{A}\nabla_{A}\chi + \frac{1}{2}\nabla_{A}\xi_{B}\Gamma^{AB}\chi + \frac{1}{2}\nabla_{A}\xi^{A}\chi$$
$$\mathcal{L}_{\xi}V^{A} = \xi^{B}\nabla_{B}V^{A} + (\nabla^{A}\xi_{B} - \nabla_{B}\xi^{A})V^{B} + w\nabla_{B}\xi^{B}V^{A}$$

2. 2D-diffeomorphisms

$$L_{\xi}\chi = \xi^A D_A \chi - \frac{1}{2} (\xi^A F_A - D_A \xi^A) \chi$$
 and $L_{\xi} \mathcal{H}^{AB} = \xi^C D_C \mathcal{H}^{AB}$

3. global O(D,D) transformations ($\mathcal{O}^{A}{}_{C}\mathcal{O}^{B}{}_{D}\eta^{CD}=\eta^{AB}$)

$$\chi o \mathcal{S}_{\mathcal{O}} \chi$$
 and $\mathcal{H}^{AB} o \mathcal{O}^{A}{}_{\mathcal{C}} \mathcal{H}^{CD} \mathcal{O}^{B}{}_{\mathcal{D}}$

 \triangleright section condition (SC) for f_1 , f_2 with weights w_1 , w_2

$$(D_A f_1 - w_1 F_A f_1)(D^A f_2 - w_2 F^A f_2) = 0$$

SC solutions and Poisson-Lie T-duality [Hassler, 2018;Haßler, 2017]

- fix D physical coordinates x^i from $X^I = \begin{pmatrix} x^i & x^{\tilde{i}} \end{pmatrix}$ on \mathcal{D} such that $\eta^{IJ} = E_A{}^I \eta^{AB} E_B{}^J = \begin{pmatrix} 0 & \cdots \\ \cdots & \cdots \end{pmatrix} \to SC$ is solved
- ightharpoonup fields and gauge parameter depend just on x^i
- different SC solutions, relate them by symmetries of DFT

Equivalence to (m)SUGRA: 1. Generalized parallelizable spaces

- generalized tangent space element $V^{\hat{I}} = \begin{pmatrix} V^i & V_i \end{pmatrix}$
- generalized Lie derivative

$$\widehat{\mathcal{L}}_{\xi} V^{\widehat{I}} = \xi^{\widehat{J}} \partial_{\widehat{J}} V^{\widehat{I}} + \left(\partial^{\widehat{I}} \xi_{\widehat{J}} - \partial_{\widehat{J}} \xi^{\widehat{I}} \right) V^{\widehat{J}} \qquad \text{with} \qquad \partial_{\widehat{I}} = \begin{pmatrix} 0 & \partial_{i} \end{pmatrix}$$

Definition: A manifold M which admits a globally defined generalized frame field $\widehat{E}_A^{\hat{I}}(x^i)$ satisfying

1.
$$\widehat{\mathcal{L}}_{\widehat{E}_A}\widehat{E}_B^{\widehat{I}} = F_{AB}^{C}\widehat{E}_C^{\widehat{I}}$$

where $F_{AB}{}^{C}$ are the structure constants of a Lie algebra \mathfrak{h}

2.
$$\widehat{E}_{A}{}^{\widehat{I}}\eta^{AB}\widehat{E}_{B}{}^{\widehat{J}}=\eta^{\widehat{I}\widehat{J}}=\begin{pmatrix} 0 & \delta^{j}_{i} \\ \delta^{j}_{j} & 0 \end{pmatrix}$$

is a generalized parallelizable space $(M, \mathfrak{h}, \widehat{E}_A^{\widehat{I}})$.

▶ SC solution on \mathcal{D} → gen. parallelizable space $(\mathcal{D}/\tilde{G}, \tilde{\mathfrak{g}}, \widehat{E}_A^{\hat{I}})$

Equivalence to (m)SUGRA: 2. R/R field strengths [Haßler, 2017]

see also [Y. Sakatani, S. Uehara, K. Yoshida, 2016; J. Sakamoto, Y. Sakatani, K. Yoshida, 2017]

• transport χ to the generalized tangent space:

$$\widehat{\chi} = |\det \widetilde{e}_{ai}|^{-1/2} S_{\widehat{E}} \chi$$
 ($t^a \widetilde{e}_{ai} = \widetilde{g}^{-1} d\widetilde{g}$)

same for covariant derivative

$$|\det \tilde{\boldsymbol{e}}_{ai}|^{-1/2} S_{\widehat{\boldsymbol{E}}} \nabla \!\!\!/ \chi = \left(\partial \!\!\!/ - \mathbf{X}_{\widehat{\boldsymbol{i}}} \widehat{\boldsymbol{\Gamma}}^{\widehat{\boldsymbol{i}}} \right) \widehat{\chi} \quad \text{with} \quad \mathbf{X}_{\widehat{\boldsymbol{i}}} = \begin{pmatrix} \mathbf{I}^i \\ -V_i \end{pmatrix}$$
$$S_{\widehat{\boldsymbol{E}}} \Gamma^A S_{\widehat{\boldsymbol{E}}}^{-1} \widehat{\boldsymbol{E}}_A{}^{\widehat{\boldsymbol{i}}} = \widehat{\boldsymbol{\Gamma}}^{\widehat{\boldsymbol{i}}} \quad \text{and} \quad \partial \!\!\!/ = \widehat{\boldsymbol{\Gamma}}^i \partial_i$$

- $ightharpoonup X_{\hat{i}}$ vanishes if $\tilde{\mathfrak{g}}$ is unimodular
- $lackbr{
 ho}$ introduce field strength $\widehat{F}=e^{\phi}\mathcal{S}_{\mathcal{B}}\left(\partial\!\!\!/-\mathbf{X}_{\hat{l}}\widehat{\Gamma}^{\hat{l}}
 ight)\widehat{\chi}$
- lacktriangle and derivative $\mathbf{d}=e^{\phi}S_{B}\left(\partial\!\!\!/-\mathbf{X}_{\hat{l}}\widehat{\Gamma}^{\hat{l}}
 ight)S_{B}^{-1}e^{-\phi}$

Equivalence to m(SUGRA): 3. field equations & BI

- ▶ DFT R/R field equations: $\nabla\!\!\!/(\mathcal{K}\nabla\!\!\!\!/)\chi=0$
- rewrite them as:

$$\mathbf{d}(\star \mathbf{d}\widehat{F}) = 0 \quad \star = C^{-1}S_g^{-1}$$

puls Bianchi identity (BI)

$$\mathbf{d}\widehat{F}=0$$

action on polyforms

d
$$\leftrightarrow$$
 $d + H \land -Z \land -\iota_I$ with $Z = d\phi + \iota_I B - V$

matches the R/R sector of (m)SUGRA [A. Tseytlin, L. Wulff, 2016]

Restrictions on $\mathcal{H}_{\mathit{AB}}$ and χ to admit Poisson-Lie Symmetry

- ▶ in general $\mathcal{H}_{AB}(x^i)$ Poisson-Lie T-duality (2*D*-diff.) $\mathcal{H}_{AB}(x^{i}, x^{i\tilde{i}})$
- $ightharpoonup x^{ii}$ part not compatible with ansatz for SC solutions ightarrow avoid it

A doubled space $(\mathcal{D},\mathcal{H}_{AB},d)$ has Poisson-Lie symmetry iff

1.
$$L_{\xi}\mathcal{H}_{AB}=0 \quad \forall \, \xi \quad \rightarrow \quad \textit{D}_{A}\mathcal{H}_{BC}=0$$

2.
$$L_{\xi}\chi = 0$$
 $\forall \xi \rightarrow D_A\chi = \frac{1}{2}F_A$

lacktriangle BI for Poisson-Lie symmetric χ is algebraic

$$\nabla \chi = \frac{1}{12} F_{ABC} \Gamma^{ABC} \chi$$

- ▶ finding R/R solutions reduces to linear algebra
- same holds NS/NS sector
 (here field equations are in general quadratic)

Application to integrable deformations

starting point is solution to (m)CYBE

$$[\mathcal{R}x,\mathcal{R}y] - \mathcal{R}([\mathcal{R}x,y] + [x,\mathcal{R}y]) = -c^2[x,y]$$

ightharpoonup generalized metric after global O(D,D) very simple

$$\mathcal{H}^{AB} = egin{pmatrix} \delta_{ab} & 0 \ 0 & \delta^{ab} \end{pmatrix}$$

structure coefficients have non-trivial components

$$F_{abc}=\kappa^{3/2}c^2f_{ab}{}^d\delta_{dc}\,,\quad F_{ab}{}^c=0\,,\quad F^{ab}{}_c=\delta^{ad}\delta^{be}\delta_{cf}f_{de}{}^f\,,\quad F^{abc}=0\,,$$

- field equations for NS/NS + R/R sector become linear
- Poisson-Lie T-dualities between various deformations are manifest

Summary

- DFT, PL-Symmetry and integrable deformations fit together nicely
- interpretation of doubled space does not require winding modes anymore (phase space perspective instead)
- various interesting questions
 - implement coset spaces and dressing coset construction
 - fermionic sector and fermionic dualities
 - lacktriangle Drinfeld doubles o quantum groups o rich mathematical structure
 - ▶ new way to organized α' corrections?
 - new way to construct non-geometric backgrounds?
 - branes in curved space [Klimcik, and Severa, 1996 (D-branes)]?
- facilitates new applications
 - \blacktriangleright integrable deformations of 2D σ -models
 - solution generating technique
 - explore underlying structure of AdS/CFT

Additional structure on the Drinfeld double

[Blumenhagen, Hassler, and Lust, 2015, Blumenhagen, Bosque, Hassler, and Lust, 2015]

- ▶ right invariant vector E_A^I field on \mathcal{D} is the inverse transposed of left invariant Maurer-Cartan form $t_A E^A_I dX^I = g^{-1} dg$
- \blacktriangleright two η -compatible, covariant derivatives¹
 - flat derivative

$$D_A V^B = E_A{}^I \partial_I V^B - w F_A V^B, \qquad F_A = D_A \log \left| \det(E^B{}_I) \right|$$

2. convenient derivative

$$\nabla_A V^B = D_A V^B + \frac{1}{3} F_{AC}{}^B V^C$$

• generalized metric \mathcal{H}_{AB} (w = 0)

$$\mathcal{H}_{AB} = \mathcal{H}_{(AB)}, \qquad \mathcal{H}_{AC} \eta^{CD} \mathcal{H}_{DB} = \eta_{AB}$$

- generalized dilaton d with e^{-2d} scalar density of weight w = 1
- ▶ triple $(\mathcal{D}, \mathcal{H}_{AB}, d)$ captures the doubled space of DFT

¹definitions here just for quantities with flat indices

Double Field Theory for $(\mathcal{D},\mathcal{H}_{AB},d)$ [Blumenhagen, Bosque, Hassler, and Lust, 2015]

see also [Vaisman, 2012; ;; ; . . .]

► action $(\nabla_A d = -\frac{1}{2}e^{2d}\nabla_A e^{-2d})$ $S_{NS} = \int_{\mathcal{D}} d^{2D}X e^{-2d} \left(\frac{1}{8}\mathcal{H}^{CD}\nabla_C \mathcal{H}_{AB}\nabla_D \mathcal{H}^{AB} - \frac{1}{2}\mathcal{H}^{AB}\nabla_B \mathcal{H}^{CD}\nabla_D \mathcal{H}_{AC} - 2\nabla_A d\nabla_B \mathcal{H}^{AB} + 4\mathcal{H}^{AB}\nabla_A d\nabla_B d + \frac{1}{6}F_{ACD}F_B{}^{CD}\mathcal{H}^{AB}\right)$

2D-diffeomorphisms

$$L_{\xi}V^{A} = \xi^{B}D_{B}V^{A} + wD_{B}\xi^{B}V^{A}$$

 \triangleright global O(D,D) transformations

$$V^A
ightarrow T^A{}_B V^B$$
 with $T^A{}_C T^B{}_D \eta^{CD} = \eta^{AB}$

generalized diffeomorphisms

$$\mathcal{L}_{\xi}V^{A} = \xi^{B}
abla_{B}V^{A} + \left(
abla^{A}\xi_{B} -
abla_{B}\xi^{A}
ight)V^{B} + w
abla_{B}\xi^{B}V^{A}$$

section condition (SC)

$$\eta^{AB}D_A\cdot D_B\cdot=0$$

Symmetries of the action

► S_{NS} invariant for $X^I \rightarrow X^I + \xi^A E_A^I$ and

1. $\mathcal{H}^{AB} \to \mathcal{H}^{AB} + \mathcal{L}_{\xi}\mathcal{H}^{AB}$ and $e^{-2d} \to e^{-2d} + \mathcal{L}_{\xi}e^{-2d}$ 2. $\mathcal{H}^{AB} \to \mathcal{H}^{AB} + \mathcal{L}_{\xi}\mathcal{H}^{AB}$ and $e^{-2d} \to e^{-2d} + \mathcal{L}_{\xi}e^{-2d}$

object	gendiffeomorphisms	2 <i>D</i> -diffeomorphisms	global $O(D,D)$
\mathcal{H}_{AB}	tensor	scalar	tensor
$\nabla_{A}d$	not covariant	scalar	1-form
e^{-2d}	scalar density ($w=1$)	scalar density ($w=1$)	invariant
η_{AB}	invariant	invariant	invariant
$F_{AB}{}^C$	invariant	invariant	tensor
$E_A{}'$	invariant	vector	1-form
$S_{ m NS}$	invariant	invariant	invariant
SC	invariant	invariant	invariant
D_A	not covariant	covariant	covariant
$ abla_{\mathcal{A}}$	not covariant	covariant	covariant
		manifest	