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String theory...

» string theory is a quantum gravity — spacetime is not fixed
» it should evolve from the theory itself

PROBLEM:
“usual” implementations of string theory describe
dynamic of strings in a certain background spacetime
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...and the string theory landscape [3].
» How to choose such a background?
» |s (are) there one, ten, hunderts or billions of them?
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SUGRA in a nutshell

v

low engery effective theory for (super) string theory
here the NS/NS sector only

v

1

Sns = / dPx /ge~2¢ <R + 49,00 P — WHWP)

v

Einstein-Hilbert like part = general relativity

v

2-form gauge field B, with

v

field strength Hy., = 9,8,

~ Einstein-Maxwell theory — point particles

v

backgrounds solve Sys’s field equations



Backgrounds “seen” by point particles

» general relativity: spacetime = smooth manifold
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Strings have a different perspective [4]:

» closed strings also wind around the torus — T-duality

circles with radius
R

and

1/R

are identical

» new interesting properties like non-commutativity

» compactifications lead to gauged SUGRA
» moduli stabilization
» effective cosmological constant G
» spontaneous SUSY breaking rl



Strings have a different perspective [4]:

» closed strings also wind around the torus — T-duality

circles with radius
R

and

1/R

are identical

» new interesting properties like non-commutativity

» compactifications lead to gauged SUGRA
» moduli stabilization
» effective cosmological constant G
» spontaneous SUSY breaking rl



Strings have a different perspective [4]:

» closed strings also wind around the torus — T-duality

circles with radius
R

and

1/R

are identical

» new interesting properties like non-commutativity

» compactifications lead to gauged SUGRA
» moduli stabilization
» effective cosmological constant G
» spontaneous SUSY breaking rl



Double Field Theory [5, 6] in a nutshell

» considers both, winding and momentum mode of string

» doubling of coordinates D — 2D
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Double Field Theory [5, 6] in a nutshell

» considers both, winding and momentum mode of string

» doubling of coordinates D — 2D

XM= (% x1) ¢ =6 3log /g

aM = (5’ 8’) SDFT = deDX 672(15/7?,
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Gauge transformations and the strong constraint [7, 8]

» generalized Lie derivative combines

1. diffeomorphisms } available in SUGRA
2. B-field gauge transformations

3. p-field gauge transformations
LHMN = ePoptMN 1 (0Mep — 0peMYHPN + (9Vep — apeNyHMP
Led! = Moy + Loy
» closure of this algebra needs L¢, L¢, — L¢,Le, = Le,
with &3 = [¢4, 2] (C-bracket)
» only possible when strong constraint holds

oM. = 0

» trivial implementation of SC ;- = 0 — DFT = SUGRA
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Scherk-Schwarz compactification [9] or
a tool to construct backgrounds and fluctuations

simplification (truncation)

string theory

matching
amplitudes

without fluxes

D — d SUGRA

embedding

tensor

v

\4

Scherk-Schwarz
ansatz

strong constraint

generalized
group manifold
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Group manifold = Scherk-Schwarz ansatz in doubled coordinates

1. Homogenious space in 2(D — d) dimensions

» space “looks” at every point the same
» 2(D — d) linear independent Killing vector K,/

L HMN =0 and Lys¢' =0

» infinitesimal translations EK/J form group GL

2. Gauge transformations

» map space to itself by
Ly wHY = ~Fp UyMHY = Fon UyMH"

» infinitesimal translations EUNM form group Gg
» structure coefficients F;y = covariant fluxes
» closure of Ggr — constraints on Fj



Gauged SUGRA [10, 11] and its vaccua

» DFT action + Scherk-Schwarz ansatz gives rise to

Serr = / dx(P=9)/—ge=2¢ (R+ 40,00 ¢ — lHMH e
1 1
- Z/HMNFM“VFNHV + EDH/HMND‘WHMN — V)

with scalar potential
V = _%J:IKL'FJKL H/J + %IIKMFJLNHIJHKLHMN

» maximally symmetric vacuum = Minkowski
(no warping implemented yet)

» e.0.m for vacuum reduce to

0=Ruw, V=0 and K" =V ~0

» additional constraints on covariant fluxes Fj



Covariant fluxes as classification tool

» covariant fluxes Fx combine
1. geometric fluxes f and H-flux (known from SUGRA)
2. non-geometric fluxes Q and R

» find fluxes which fulfill all constraint discussed so far

» solution for D — d = 3 (non-vanishing fluxes)

Hiz3=Q# =H and f& =1F,=f

» three different cases

1. H=0and f # 0: Solvmanifold, known from SUGRA
2. H#0and f = 0: T-dual version of 1.

3. H# 0 and f # 0: genuinely non-geometric background,
called double elliptic
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How do these backgrounds “look” like?

» fibration of T2 over a S! base with coordinate x

_ 7(0) cos(fx) — sin(fx)
() = Z(0) sin(x) + cos(i)

_ p(0) cos(Hx) — sin(Hx)
PX) = (0 sin(Fix) + cos(Fx)

» T2 parameterized by p and 7 (functions of x)
» fixed point of twist is p(0) = 7(0) =/
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Moduli stabilization

» scalar potential for fiber moduli p(0) = pand 7(0) = 7

o P02 ) ) | H2 (14200 — o) + 1ol%)

272 20?2
» minimum at fixed point of twist with V,;, = 0 (Minkowski)
» mass terms for p and

modulus | px 6 R T
mass | 2|H| 2[|H| 2|f| 2|f]

» volume p, of fiber torus is stabilized
— no large volume limit!

» still 5 flat directions, e.g. radius of base R
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Duality orbits and flux quantization

» double elliptic solution is invariant under global O(3, 3)
— not one solution but a family of them = duality orbit [12]

PROBLEM:
Minimum of potential is arbitrary! How can we fix it?

SOLUTION:
Use insights from string theory. Monodromy has to be in
T-duality group O(2,2, Z)

» H and f gets quantized

» minimum of the potential at T2 orbifold points
= volume at order of string length

» closely related the asymmetric orbifold [13, 14]



A hidden violation of the strong constraint

We have found a background
» without large volume limit
» stabilizes additional moduli
» generalized metric fulfills the strong constraint

not in scope of SUGRA or generalized geometry

BUT, looking more closely, we see
» one Killing vector which violates the strong constraint

KI=(0 —3(HCH1%2)  L(HRHR2) 1 —L(KCH+HES)  L(C+HS?))

— patched by diffeomorphisms, B-field and g-transformations
» algebra of Killing vectors still closes

at the border of DFT’s scope



Applications to inflation

BICEP2 [15]:

T T
Planck+WP+highL

04 | .
Planck+WP-+highL+BICEP2

03} T i

» detection of B-modes from
gravitational waves

10.002

_  o+0.07
» large value of |r = 0.27 =
compared to previous results

0.94 0.96 0.98 1.00

— chaotic inflation with trans-Planckian field range

» problem for inflation in an effective theory

SOLUTION:
axion as inflaton + monodromy to enlarge field range

monodromy inflation [16, 17]



Monodromy on double elliptic background [18]
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Summary, conclusions and outlook mH=0andf#0

H#Q0andf=0
e H#0andf#0

v new applications, e.g. inflation,
non-associative geometry[19], ...



Thank you for your attention.
Do you have any questions?
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