13. D-branes

To be discussed on Thursday, January 30, 2013 in the tutorial.

Exercise 13.1: D-brane mode expansion

Let $x^{\mu}(\mu=0, \ldots, p)$ denote the spacetime coordinates tangential to a $\mathrm{D} p$-brane and use x^{m} ($m=p+1, \ldots, 25$) for the transverse directions.
a) What kind of boundary conditions (Neumann or Dirichlet) does one have to impose on $X^{\mu}(\sigma, \tau)$ and on $X^{m}(\sigma, \tau)$ if the string begins and ends on the $\mathrm{D} p$-brane?
b) What kind of boundary conditions ((N) or (D)) does one have to impose on $X^{\mu}(\sigma, \tau)$ and on $X^{m}(\sigma, \tau)$ if the string begins on the $\mathrm{D} p$-brane but has the other end moving freely in spacetime?
c) For a string that begins and ends on a $\mathrm{D} p$-brane at position \bar{x}^{a}, we have, for the transverse coordinates $X^{a}(\sigma, \tau)$,

$$
X^{a}(\tau, 0)=X^{a}(\tau, \pi)=\bar{x}^{a}
$$

Furthermore, the fact that X^{a} solves the $2 D$ wave equation implies that

$$
\begin{equation*}
X^{a}(\sigma, \tau)=\frac{1}{2}\left(f^{a}(\tau+\sigma)+g^{a}(\tau-\sigma)\right) \tag{1}
\end{equation*}
$$

for some as yet arbitrary functions f^{a} and g^{a}. Evaluate (1) at $\sigma=0$ to show that

$$
X^{a}(\sigma, \tau)=\bar{x}^{a}+\frac{1}{2}\left(f^{a}(\tau+\sigma)-f^{a}(\tau-\sigma)\right) .
$$

d) Use the boundary condition at $\sigma=\pi$ to derive

$$
f^{a}(\tau+\pi)=f^{a}(\tau-\pi)
$$

e) The result of part d) means that f^{a} is a periodic function of its argument with period 2π. Show that this forbids a linear term in τ in $X^{a}(\tau, \sigma)$. What is the physical significance of the absence of a linear term in τ in the mode expansion of $X^{a}(\tau, \sigma)$?
f) Does one have a linear term in τ in $X^{\mu}(\tau, \sigma)$? Putting everything together, what is the physical consequence of the observation in parts e) and f) for the open string states with both ends on a $\mathrm{D} p$-brane?

Exercise 13.2: Strings between D-branes with different dimensionality

Consider a string stretching between a $\mathrm{D} p$-brane and a parallel $\mathrm{D} q$-brane with $1 \leq q<p \leq 25$.
a) Assume $p=2$ and $q=1$ to draw a figure illustrating the situation.
b) Classify the string coordinates X^{μ} according to the boundary conditions they have to fulfill.
c) Write down the boundary conditions of the coordinates $X^{r}, r=q+1, \ldots, p$

Hint: These are the coordinates which have to fulfill mixed Neumann-Dirichlet boundary conditions.
d) Show that the mode expansion of $X^{r}, r=q+1, \ldots, p$ can be written as

$$
X^{r}(\tau, \sigma)=\bar{x}^{r}+\sum_{n \in \mathbb{Z}_{\text {odd }}^{+}}\left(A_{n}^{r} \cos \left(\frac{n \tau}{2}\right)+B_{n}^{r} \sin \left(\frac{n \tau}{2}\right)\right) \cos \left(\frac{n \sigma}{2}\right),
$$

where \bar{x}^{r} is the position of the $\mathrm{D} q$-brane in the r-directions, and A_{n}^{r}, B_{n}^{r} are expansion coefficients.

