
An Introduction to String Theory, Winter 2022/23

Lecturer: Dr. Falk Hassler, falk.hassler@uwr.edu.pl
Assistant: M.Sc. Luca Scala, 339123@uwr.edu.pl

5. String solutions and gravitational waves (18 points)

To be discussed on Thursday, 3rd November, 2022 in the tutorial.
Please indicate your preferences until Saturday, 29/10/2022, 21:00:00 on the website.

Exercise 5.1: Classical string solutions

We showed during the lecture that in conformal gauge any classical string solution is of the
form

Xµ(τ, σ) =
1

2
(F µ(τ + σ) +Gµ(τ − σ)) , (1)

where the function F µ(u) and Gµ(v) are valued in D-dimensional Minkowski space. In this
problem, we only consider closed strings, implying that Xµ(τ, σ + 2π) = Xµ(τ, σ) holds.
a) (1 point) Additionally, we know that the motion of the string is constraint by(

Ẋ ±X ′
)2

= 0 .

Remember where these two constraints come form and show how they affect F µ(u) and
Gµ(u)?

b) (2 points) Fix
X0(τ, σ) = τ

and rewrite the general solution in terms of two new, periodic functions f i(u) and gi(u)
valued in the (D − 2)-dimensional unit sphere, and the appropriate integration constants.
Hint: You might get a better intuition how this works, by starting with the simplest example
in D = 3 where the unit sphere is just a unit circle.

c) (2 points) Write down the time evolution of a string which, at time X0 = 0, forms a circle
of radius R at rest in the X1-X2-plane.

d) (2 points) Calculate the mass of the solution found in c).
e) (2 points) Show that, for a generic solution in D = 4, there are points u∗ and v∗ in the

parameter space for which f(u∗) = g(v∗).
f) (3 points) Show that around such points, the trace of the string in spacetime forms a cusp

singularity, moving (instantaneously) at the speed of light.
Hint: An (ordinary) cusp in the x-y-plane can be defined (locally) as the set of solutions of
the equation x3 = y2. You will find the cusp in parameterised form by expanding f and g
around the singular point.

Exercise 5.2: Gravitational waves

In the last exercise, we encountered the field equations of general relativity, also called Einstein
equations. In D-dimensional spacetime, they read

Rµν −
1

2
Rgµν =

κ2
D

4
Tµν (2)
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for some constant κD. For many physical phenomena gravity is very weak, and the metric
gµν(x) can be chosen to be very close to the Minkowski metric

gµν(x) = ηµν + κDhµν(x)

by viewing hµν as a small fluctuation.
a) (2 points) Show that to the first order in hµν the Einstein equations (2) take the form

∂σ∂σ(hµν − ηµνh
ρ
ρ)− ∂σ(∂µhσν + ∂νhσµ) + ∂µ∂νh

σ
σ + ηµν∂

ρ∂λhρλ = −κD

2
Tµν (3)

where indices are raised and lowered with ηαβ and ηαβ.
Hint: Here you clearly have to compute an infinitesimal, because hµν is very small, variation
of (2). You can find, i.e. on the Wikipedia page for the Einstein-Hilbert action how this is
done for its individual components (see the section “2.2 Variation of the Riemann tensor,
Ricci tensor and the Ricci scalar”)

b) (1 point) Show that by introducing

hµν = hµν −
1

2
hσ

σηµν

you can bring (3) to the form

∂σ∂σhµν − ∂σ
(
∂µhσν + ∂νhσµ

)
+ ηµν∂

ρ∂λhρλ = −κD

2
Tµν .

c) (1 point) Explain from what we learned in the lecture and discussed in the last exercise
why the metric gµν transforms like

δgµν = ∇µξν +∇νξµ

under diffeomorphisms.
d) (2 points) Consider a diffeomorphism that solves the inhomogeneous Laplace equation

∂σ∂σξµ = −∂νhνµ +
1

2
∂µh

σ
σ

Show that after applying it, the linearised Einstein equations reduce to

∂σ∂σh
′
µν =

κ

2
Tµν

(with h
′
µν arising after the diffeomorphism).

In the absence of a source this is just a wave equation describing gravitational waves.
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