4. Polyakov action and conformal transformations

To be discussed on Thursday, November 14, 2013 in the tutorial.

Exercise 4.1: Polyakov action (field equations)

Consider the Polyakov action

$$
S_{\mathrm{P}}=-\frac{T}{2} \int d^{2} \sigma \sqrt{h} h^{\alpha \beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} \eta_{\mu \nu}
$$

a) $\operatorname{Remembering} \operatorname{det}(\exp A)=\exp (\operatorname{Tr} A)$, show that

$$
\delta h=-h_{\alpha \beta}\left(\delta h^{\alpha \beta}\right) h,
$$

where $h=-\operatorname{det}\left(h_{\alpha \beta}\right)$.
b) The energy momentum tensor $T_{\alpha \beta}$ describes the response of the action to changes in the metric:

$$
\delta S=-T \int d^{2} \sigma \sqrt{h} T_{\alpha \beta} \delta h^{\alpha \beta} \quad \Leftrightarrow \quad T_{\alpha \beta}=-\frac{1}{T \sqrt{h}} \frac{\delta S}{\delta h^{\alpha \beta}} .
$$

Compute $T_{\alpha \beta}$ for the Polyakov action.
c) Find the equations of motion for $h^{\alpha \beta}$ and show that, after some manipulation and reinsertion into S_{P}, one re-obtains the Nambu-Goto action.
d) Show that adding a "cosmological constant term",

$$
S_{1}=\lambda \int d^{2} \sigma \sqrt{h}
$$

to the Polyakov action leads to inconsistent field equations for $h_{\alpha \beta}$ in the combined system $S_{\mathrm{P}}+S_{1}$ when $\lambda \neq 0$.

Exercise 4.2: Polyakov action (symmetries)

a) Show in one line that the Weyl invariance $S_{\mathrm{P}}\left[e^{2 \Lambda} h_{\alpha \beta}, X^{\mu}\right]=S_{\mathrm{P}}\left[h_{\alpha \beta}, X^{\mu}\right]$ automatically implies $h^{\alpha \beta} T_{\alpha \beta}=0$ without the use of the equations of motion.
b) Verify the tracelessness of $T_{\alpha \beta}$ directly by using your result for $T_{\alpha \beta}$ from problem 1b).
c) How does $h_{\alpha \beta}$ have to transform under arbitrary reparameterizations $(\tau, \sigma) \rightarrow(\tilde{\tau}(\tau, \sigma), \tilde{\sigma}(\tau, \sigma))$ for S_{P} to be invariant?

Exercise 4.3: The residual conformal transformations

a) Using light cone coordinates $\sigma^{ \pm}$, the world sheet metric in conformal gauge reads

$$
d s^{2}=-\Omega^{2} d \sigma^{+} d \sigma^{-}
$$

where the conformal factor $\Omega\left(\sigma^{+}, \sigma^{-}\right)$can be absorbed by a Weyl transformation to make the metric flat. Show that transformations of the type

$$
\sigma^{+} \rightarrow \tilde{\sigma}^{+}\left(\sigma^{+}\right), \quad \sigma^{-} \rightarrow \tilde{\sigma}^{-}\left(\sigma^{-}\right)
$$

do not lead one out of the conformal gauge. These transformations are called conformal transformations and correspond to a residual freedom in choosing the worldsheet coordinates even after one has gone to conformal gauge.
b) Using $T_{ \pm \pm}=\frac{1}{2} \partial_{ \pm} X \cdot \partial_{ \pm} X$ and the Poisson brackets in conformal gauge,

$$
\begin{aligned}
& \left\{X^{\mu}(\sigma, \tau), X^{\nu}\left(\sigma^{\prime}, \tau\right)\right\}=\left\{\dot{X}^{\mu}(\sigma, \tau), \dot{X}^{\nu}\left(\sigma^{\prime}, \tau\right)\right\}=0 \\
& \left\{X^{\mu}(\sigma, \tau), \dot{X}^{\nu}\left(\sigma^{\prime}, \tau\right)\right\}=\frac{1}{T} \eta^{\mu \nu} \delta\left(\sigma-\sigma^{\prime}\right)
\end{aligned}
$$

calculate the Poisson brackets

$$
\left\{T_{ \pm \pm}(\sigma, \tau), X^{\mu}\left(\sigma^{\prime}, \tau\right)\right\}
$$

c) Use the definition

$$
L_{\xi}:=2 T \int_{0}^{\bar{\sigma}} d \sigma \xi\left(\sigma^{+}\right) T_{++}\left(\sigma^{+}\right)
$$

and the result of part b) to calculate the Poisson bracket

$$
\left\{L_{\xi}, X^{\mu}(\sigma, \tau)\right\}
$$

and show that the L_{ξ} generate infinitesimal conformal transformations via the Poisson bracket.
d) For the closed string, one can also define the analogous quantities for T_{--}and decompose the functions $\xi\left(\sigma^{ \pm}\right)$into Fourier components $e^{i m \sigma^{ \pm}}$. The resulting generators L_{m} and \bar{L}_{m} then form two copies of the classical Virasoro algebra with respect to the Poisson bracket, i.e.

$$
\left\{L_{m}, L_{n}\right\}=-i(m-n) L_{m+n},
$$

and similarly for the \bar{L}_{m}. Verify explicitly that the above commutation relations satisfy the Jacobi identity, i.e. form a Lie algebra.
e) Show that the generators L_{0}, L_{1} and L_{-1} form a Lie subalgebra.
f) Show that the combination $\left(\bar{L}_{0}-L_{0}\right)=T \int_{0}^{2 \pi} d \sigma \dot{X} \cdot X^{\prime}$ generates rigid σ-translations along the closed string.

