Lecturer: Dr. Falk Hassler, falk.hassler@uwr.edu.pl
Assistant: M.Sc. Luca Scala, 339123@uwr.edu.pl

2. Relativistic Actions

To be discussed on Thursday, $13^{\text {th }}$ October, 2022 in the tutorial.
Please indicate your preferences until Saturday, 08/10/2022, 21:00:00 on the website.

Exercise 2.1: Point particle action

Consider the action for a point particle with the dynamical einbein $e(\tau)$ and $X(\tau)$ fields:

$$
\begin{equation*}
S=\frac{1}{2} \int \mathrm{~d} \tau\left(e^{-1} \dot{X}^{\mu} \dot{X}^{\nu} \eta_{\mu \nu}-e m^{2}\right) . \tag{1}
\end{equation*}
$$

a) (1 point) Derive the equations of motion.
b) (1 point) Integrate out the field e to discover the first relativistic point particle action

$$
\begin{equation*}
S_{\mathrm{pp}}=-m \int \mathrm{~d} \tau \sqrt{-\dot{X}^{\mu} \dot{X}_{\mu}} \tag{2}
\end{equation*}
$$

discussed in the lecture.

Exercise 2.2: Non-relativistic limit of the point particle action

Expand the action (2) in the non-relativistic limit and show that it becomes the action for a point particle of mass m.

Exercise 2.3: Reparametrisation invariance

The action (1) is invariant under reparametrisation of the particle world line.
a) (2 points) Consider the finite transformation

$$
\tau \rightarrow \tau^{\prime}=f(\tau)
$$

and show the reparametrisation invariance of the action.
b) (2 points) Now do the same with the infinitesimal version,

$$
\tau \rightarrow \tau^{\prime}=\tau-\xi(\tau),
$$

without using the results from the previous task.

Exercise 2.4: Point particle in curved space

Hint: You might want to only choose this problem when you have already some familiarity with general relativity.

Take the action (1) with a general metric $g_{\mu \nu}$ instead of the Minkowski metric $\eta_{\mu \nu}$,

$$
\begin{equation*}
S=\frac{1}{2} \int \mathrm{~d} \tau\left(e^{-1} \dot{X}^{\mu} \dot{X}^{\nu} g_{\mu \nu}-e m^{2}\right) \tag{4}
\end{equation*}
$$

and compute its equation of motion in a gauge with $e=1$. Show that its the same as the geodesic equation.

Exercise 2.5: p-brane action

3 points
We can easily generalise the Nambu-Goto action from the lecture to p-branes (where the string has $p=1$):

$$
S_{p}=-T_{p} \int \mathrm{~d}^{p+1} \sigma \sqrt{-\operatorname{det} G_{\alpha \beta}}
$$

with the induced metric

$$
\begin{equation*}
G_{\alpha \beta}=g_{\mu \nu}(X) \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} \tag{5}
\end{equation*}
$$

Show that this action is invariant under reparametrisations.

Exercise 2.6: Induced metric for the two-sphere

3 points
Compute the metric of the two-sphere with radius R by embedding it into Euclidean space and using the (5).

