1. Light-cone coordinates and compact dimensions

To be discussed on Thursday, October 24, 2013 in the tutorial.

Exercise 1.1: Lorentz transformations in light-cone coordinates

Consider coordinates $x^{\mu}=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ and the associated light-cone coordinates $\left(x^{+}, x^{-}, x^{2}, x^{3}\right)$. Write the following Lorentz transformations in terms of the light-cone coordinates:
a) A boost with velocity parameter β in the x^{1} direction.
b) A rotation with angle θ in the x^{1}, x^{2} plane.
c) A boost with velocity parameter β in the x^{3} direction.

Exercise 1.2: Gravitational field of a point mass in a compactified five-dimensional world.

Consider a five-dimensional spacetime with space coordinates (x, y, z, w) not yet compactified. A point mass M is located at the orgin $(x, y, z, w)=(0,0,0,0)$.
a) Find the gravitation potential $V_{g}^{(5)}(r)$. Write your answer in terms of $M, G^{(5)}$, and $r=$ $\sqrt{x^{2}+y^{2}+z^{2}+w^{2}}$. Hint: Use $\nabla^{2} V_{g}^{(5)}=4 \pi G^{(5)} \rho_{m}$ and the divergence theorem.
Now let w become a circle with radius a while keeping the mass fixes.

b) Write an exact expression for the gravitational potential $V_{g}^{(5)}(x, y, z, 0)$. This potential is a function of $R=\sqrt{x^{2}+y^{2}+z^{2}}$ and can be written as an infinite sum.
c) Show that for $R \gg a$ the gravitational potential takes the form of a four dimensional graviational potential, with Newton's constant $G^{(4)}$ given in term of $G^{(5)}$ as

$$
\begin{equation*}
G^{(4)}=\frac{G^{(5)}}{2 \pi a} . \tag{1}
\end{equation*}
$$

Hint: Turn the infinite sum into an integral.
These results confirm both, the relations between the four- and five-dimensional Newton constants in a compactification and the emergence of a four-dimensional potential at distances large compared to the size of the compact dimensions.

