9. Conformal Field Theory

To be discussed on Thursday, December 19, 2013 in the tutorial.

Exercise 9.1: Conformal transformations as area preserving maps

In general, a conformal transformation $x \rightarrow \tilde{x}(x)$ is defined to be a transformation that preserves the metric up to a local scale factor:

$$
\tilde{g}_{p q}(\tilde{x}(x))=\Omega^{2}(x) \frac{\partial x^{m}}{\partial \tilde{x}^{p}} \frac{\partial x^{n}}{\partial \tilde{x}^{q}} g_{m n}(x) .
$$

Specializing from now on to positive definite curved metric (i.e., Euclidean signature) the angle α between two vector fields $v^{m}(x)$ and $w^{m}(x)$ at a point x_{0} is defined by

$$
\cos \alpha(v, w)\left(x_{0}\right):=\left.\frac{v^{m} w^{n} g_{m n}}{\|v\|\|w\|}\right|_{x=x_{0}}
$$

Here, $\|v\|:=\sqrt{v^{m} v^{n} g_{m n}}$ is the length, or norm, of a vector v^{m}.
a) Show that a conformal transformation is angle-preserving, i.e., that

$$
\cos \alpha(\tilde{v}, \tilde{w})\left(\tilde{x}\left(x_{0}\right)\right)=\cos \alpha(v, w)\left(x_{0}\right)
$$

where

$$
\hat{v}^{m}(\tilde{x}(x))=\frac{\partial \tilde{x}^{m}}{\partial x^{n}} v^{n}(x)
$$

is the transformed vector field.
b) In conformal gauge, the 2D Lorentzian world sheet metric is

$$
\begin{aligned}
d s^{2} & =\Omega^{2}(\sigma, \tau)\left(-d \tau^{2}+d \sigma^{2}\right) \\
& =-\Omega^{2}\left(\sigma^{+}, \sigma^{-}\right) d \sigma^{+} d \sigma^{-}
\end{aligned}
$$

Performing the Wick rotation

$$
\sigma^{ \pm}=(\tau \pm \sigma) \rightarrow-i(\tau \pm i \sigma)
$$

write down the resulting Euclidean metric both in terms of the (Wick-rotated) (τ, σ) and the complex coordinates

$$
z^{\prime}=\tau-i \sigma, \quad \bar{z}^{\prime}=\tau+i \sigma
$$

c) Show that all holomorphic coordinate transformations

$$
z^{\prime} \rightarrow \tilde{z}\left(z^{\prime}\right), \quad \bar{z}^{\prime} \rightarrow \overline{\tilde{z}}\left(\bar{z}^{\prime}\right)
$$

change the metric only by a local rescaling $\Omega^{2}\left(z^{\prime}, \bar{z}^{\prime}\right) \rightarrow f\left(z^{\prime}, \bar{z}^{\prime}\right) \Omega^{2}\left(z^{\prime}, \bar{z}^{\prime}\right)$, i.e., that they are conformal.

Exercise 9.2: Fractional linear transformation

The group $\operatorname{SL}(2, \mathbb{R})$ of (2×2)-matrices of unit determinant acts on the Riemann-sphere (i.e. on $\mathbb{C} \cup\{\infty\}$) by so-called fractional linear transformations:

$$
z \rightarrow z^{\prime}=\frac{a z+b}{c z+d}
$$

where

$$
\left(\begin{array}{ll}
a & b \tag{1}\\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbb{R})
$$

a) Show that two successive fractional linear transformations,

$$
z \rightarrow z^{\prime}=\frac{a z+b}{c z+d}, \quad z^{\prime} \rightarrow z^{\prime \prime}=\frac{e z^{\prime}+f}{g z^{\prime}+h}
$$

are equivalent to one fractional linear transformation

$$
z \rightarrow z^{\prime \prime}=\frac{j z+k}{l z+m}
$$

where the matrix

$$
\left(\begin{array}{cc}
j & k \\
l & m
\end{array}\right) \in \operatorname{SL}(2, \mathbb{R})
$$

is the product of two $\mathrm{SL}(2, \mathbb{R})$ matrices that correspond to the single transformations $z \rightarrow z^{\prime}$ and $z^{\prime} \rightarrow z^{\prime \prime}$.
b) Show that the fractional linear action of the inverse matrix of (1) on z^{\prime} leads back to z, and hence corresponds to the inverse transformation $z^{\prime} \rightarrow z$.

Exercise 9.3: Normal ordering

Compute the following conformal normal ordered product for a free boson X^{μ}.
a) : $X^{\mu}\left(z_{1}, \bar{z}_{1}\right) X_{\mu}\left(z_{2}, \bar{z}_{2}\right) X^{\nu}\left(z_{3}, \bar{z}_{3}\right) X_{\nu}\left(z_{4}, \bar{z}_{4}\right)$:
b) : $\partial X^{\mu}\left(z_{1}, \bar{z}_{1}\right) \partial X^{\nu}\left(z_{2}, \bar{z}_{2}\right)$:
c) $: \partial X^{\mu}\left(z_{1}, \bar{z}_{1}\right) \bar{\partial} X^{\nu}\left(z_{2}, \bar{z}_{2}\right)$:

Exercise 9.4: Operator product expansion

Compute the singular terms of the following OPE's.
a) $\partial X^{\mu}(z) \partial X^{\nu}(0)$
b) $\partial X^{\mu}(z) \bar{\partial} X^{\nu}(0)$

