Dr. Falk Hassler
mailto:falk.hassler@uwr.edu.pl

4. Gaussian Integrals

To be discussed on Tuesday, $29^{\text {th }}$ March, 2022 in the seminar.

Last lecture, we have encountered an new tool, the path integral. So far, we just have show that it gives us an interesting new perspective on results we already know from the canonical quantisation. Its full power will just become obvious in the next lecture. To prepare for this revelation, we will study here some interesting properties of Gaussian integrals following the nice remark from the book Quantum Field Theory in a Nutshell by A. Zee:

Believe it or not, a significant fraction of the theoretical physic literature consists of varying and elaborating this basic Gaussian integral.

Exercise 4.1: Integrals, Integral, Integrals

a) Do the integral

$$
G=\int_{-\infty}^{\infty} \mathrm{d} x e^{-1 / 2 x^{2}}
$$

by first squaring it and than change to polar coordinates. Now use the result to show

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-1 / 2 a x^{2}+J x}=\sqrt{\frac{2 \pi}{a}} e^{J^{2} /(2 a)} \tag{1}
\end{equation*}
$$

b) We mentioned in the lecture that moments

$$
\left\langle x^{n}\right\rangle=\frac{\int_{-\infty}^{\infty} \mathrm{d} x x^{n} e^{-1 / 2 a x^{2}}}{\int_{-\infty}^{\infty} \mathrm{d} x e^{-1 / 2 a x^{2}}}
$$

are an important tool to evaluate path integrals. Explain why $\left\langle x^{2 n+1}\right\rangle=0$ for $n \in \mathbb{N}$. Now compute $\left\langle x^{2 n}\right\rangle$ by repeatedly applying $\mathrm{d} / \mathrm{d} a$ to (1) with $J=0$. What is the combinatorics behind the prefactor you obtain?
c) To transition from a simple integral to a path integral, substitute x in the above expressions by the vector x_{i}, A by the matrix $A^{i j}$ and J by the vector J^{i} with $i, j=1, \ldots, N$. Proof that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \mathrm{d} x^{1} \cdots \int_{-\infty}^{\infty} \mathrm{d} x^{N} e^{x_{i} A^{i j} x_{j}+J^{i} x_{i}}=\sqrt{\frac{(2 \pi)^{N}}{\operatorname{det} A}} e^{J^{i}\left(A^{-1}\right)_{i j} j^{j} / 2} \tag{2}
\end{equation*}
$$

holds (Einstein sum convention is implied).
d) Repeat the steps from problem 2 to compute first $\left\langle x_{i} x_{j}\right\rangle$ and then find a convenient way to compute $\left\langle x_{i} x_{j} \cdots x_{k} x_{l}\right\rangle$.
Hint: What you are actually doing is directly following from Wick's theorem.

Exercise 4.2: And a Little Bit of Physics

a) Compute the value of $A_{i j}$ which enters the path integral (2) for the discretised action

$$
S=\sum_{k=1}^{N}\left[\frac{m}{2} \frac{\left(x_{k+1}-x_{k}\right)^{2}}{\epsilon}-\epsilon \lambda\left(\frac{x_{k+1}+x_{k}}{2}\right)^{2}\right]
$$

we discussed in the lecture. Compute the correlator $\left\langle x_{i} x_{j}\right\rangle=\left(A^{-1}\right)_{i j}$. What is the interpretation of λ ?
b) Show how the integration $\int \mathcal{D} \Pi$ in

$$
\int \mathcal{D} \phi \mathcal{D} \Pi \exp \left[i \int_{0}^{T} \mathrm{~d}^{4} x L\right]
$$

can be computed if the Lagrangian is quadratic in Π.

