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Assistant: M.Sc. Luca Scala, 339123@uwr.edu.pl

7. Open string in light-cone gauge (22 points)

To be discussed on Thursday, 24th November, 2022 in the tutorial.
Please indicate your preferences until Saturday, 19/11/2022, 21:00:00 on the website.

We reached the halftime of the course and in this exercise, you can revisit a lot of concepts we
learned until now. Thus, even if you are assigned just to certain tasks, it might be good to
try to solve both problems completely and check how much from the material discussed in the
lecture you understand. If you struggle at any point, keep in mind: Light-cone quantisation is
one of the most basic approaches to string theory. There it is contained in nearly any textbook
on the subject.

Exercise 7.1: The classical story

In this problem, we want to study the classical open string in light-cone gauge which is given
by

X± =
1√
2
(X0 ±X1) and XI = XI I = 2, . . . , d .

a) (1 point) Verify the results

−(dX0)2 +
d∑

i=1

(dX i)2 = −2dX+dX− +
d∑

I=2

(dXI)2

from the lecture and read-off the form of the Minkowski metric ηµν in light-cone coordinates.
b) (2 points) Form exercise 5.1) we remember that the most general solutions for the two-

dimensional wave equation that governs the dynamics of the string is

Xµ(σ, τ) =
1

2
(XR(τ − σ) +XL(τ + σ))

First, show that the Dirichlet boundary conditions

X ′(τ, 0) = X ′(τ, π) = 0

implies
X ′

L(u) = X ′
R(u) and

X ′
L(u) = X ′

L(u+ 2π) .

Therefore any solution which is compatible with these boundary conditions is completely
captured by the periodic function X ′

L(σ) and its integration constants. Integrate

X ′
L(σ) =

√
α′

2

∞∑
n=−∞

e−inσαn

to compute the mode expansion of Xµ(τ, σ).

Now we impose light-cone gauge
X+(σ, τ) = 2p+α′τ.
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c) (2 points) Check that the constraint equations (Ẋ ±X ′)2 = 0 reduce in this gauge to

X ′
LX

′
L = −2α′p+X ′−

L +X ′I
LX

′
LI = 0 .

The remarkable thing about this results (and light-cone gauge) is that X ′−
L appears linearly

and we can easily solve for it. Compute X−(τ, σ) by integrating the result.
d) (2 points) We now want to learn more about the Fourier modes that describe X−(σ), which

we obtained in the previous task. Introduce the transverse Virasoro modes

L⊥
n =

1

2

∑
p

αI
pα(n−p)I

to show
α−
n =

1√
2α′p+

L⊥
n .

In particular interesting is L⊥
0 , because we need it to compute the Hamiltonian and from it

the mass of string excitations. Assume

α−
0 =

√
2α′p−

and verify

L⊥
0 = α′pIpI +

∞∑
p=1

|α⊥
p |2︸ ︷︷ ︸

N⊥

.

e) (2 points) Start from the Lagrangian

L =
1

4πα′

(
Ẋ2 −X ′2

)
and compute its canonical momentum Πµ(τ, σ) and Hamiltonian H.
Hint: We already did this in the lecture. It is a quick calculation. Just review it here and
be careful with all the signs and prefactors.
Next, derive the Poisson brackets for the coefficients αµ

n and xµ you found in the mode
expansion for Xµ(τ, σ) in b).
Hint: Find out first the Fourier expansion of the δ-function in the canonical Poisson brackets

{Πµ(τ, σ), X
ν(τ, σ)} = δνµδ(σ − σ′) .

f) (2 points) Use the result from the previous tasks above to verify the mass formula

M2 = 2p+p− − p⊥2 =
1

α′N
⊥ . (1)

Exercise 7.2: Light-cone quantisation

After understanding the classical regime (see problem 1), we can proceed with quantising the
open string in light-cone gauge.
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a) (2 points) Collect all the fundamental degrees of freedom we identified in problem 1, and
their Poisson brackets to obtain all relevant commutation relation by canonical quantisation

{·, ·} → −i[·, ·] .

b) (1 point) Describe the resulting Hilbert space HLCG. Write down the level one state which
corresponds to a spacetime vector.
Hint: The only unconstrained raising/lowering operators are αI

−n/αI
n = (αI

−n)
† for n > 0.

To calculate the mass of this state, we have to add a normal ordering constant a to the mass
formula (1), resulting in

M2 =
1

α′

(
N⊥ − a

)
.

We now try to compute this constant, by what is called ζ-function regularisation. The idea
here is to regularise the sum

−D − 2

2

∞∑
p=1

p = a ,

which arises from the normal ordering. To this end, we note that the Riemann ζ-function is
given by

ζ(s) =
∞∑
p=1

p−s .

c) (2 points) Prove that we can write the product of the ζ- and Γ-function,

Γ(s) =

∫ ∞

0

dt e−tts−1 ,

as
Γ(s)ζ(s) =

∫ ∞

0

dt
ts−1

et − 1

assuming that Re(s)>1.
d) (1 point) Verify the small t expansion

1

et − 1
=

1

t
− 1

2
+

t

12
+O(t2) ,

e) (1 point) and use it to show that for Re(s)>1

Γ(s)ζ(s) =

∫ 1

0

dt ts−1

(
1

et − 1
− 1

t
+

1

2
− t

12

)
+

1

s− 1
+

1

2s
+

1

12(s+ 1)
+

∫ ∞

1

dt
ts−1

et − 1

holds.
f) (1 point) Explain why the right-hand side above is well defined also for Re(s)>-2. It follows

that this right-hand side defines an analytic continuation of the left-hand side to Re(s)>-2.
g) (2 points) Recall the pole structure of the Γ-function and use it to show that

ζ(0) = −1

2
and ζ(−1) = − 1

12
.

Argue that the ζ-function regularisation implies that
∞∑
p=1

p = − 1

12
. (2)

3



h) (1 point) Explain, why an open string with a massless spacetime vector implies D = 26.
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