2. Point particle action and reparameterization

To be discussed on Thursday, October 31, 2013 in the tutorial.

Exercise 2.1: Massive relativistic point particle

Consider the action of a massive relativistic point particle

$$
S=-m c \int_{\tau_{0}}^{\tau_{1}} d \tau \sqrt{-\dot{x}^{\mu} \dot{x}_{\mu}} .
$$

a) Using $x^{0}=c t$, show the equivalence of S to the action

$$
\hat{S}=\int_{t_{0}}^{t_{1}} d t L(t)=-m c^{2} \int_{t_{0}}^{t_{1}} d t \sqrt{1-\frac{\vec{v}^{2}}{c^{2}}}
$$

where $\vec{v}=\vec{v}(t)$ denotes the ordinary velocity of the particle with respect to the physical time t.
b) Verify that for small velocities, $|\vec{v}| \ll c, L(t)$ reduces to the standard form of the Lagrange function, i.e., kinetic minus potential energy. What plays the rôle of the potential energy in this case.

Exercise 2.2: Reparameterization invariance of the point particle action

The advantage of the action S over the action \hat{S} is that it treats time x^{0} and the space coordinate on an equal footing, making Poincaré invariance manifest. This comes at the expense of a new, unphysical parameter τ. Verify that the covariant action S is indeed invariant under changes of this unphysical parameter, i.e., under reparameterizations

$$
\tau \rightarrow \tilde{\tau}(\tau)
$$

Exercise 2.3: Point particle action without square root

Consider now the action

$$
S^{\prime}=\frac{1}{2} \int_{\tau_{0}}^{\tau_{1}} d \tau\left(e^{-1} \dot{x}^{\mu} \dot{x}_{\mu}-e m^{2} c^{2}\right)
$$

a) How does e have to transform under the reparameterization $\tau \rightarrow \tilde{\tau}(\tau)$ in order to ensure the reparameterization invariance of S^{\prime} ?
b) Find the equation of motion for e by varying S^{\prime}. Insert the resulting equation into S^{\prime} and verify that S^{\prime} is classically equivalent to the action S of problem 2.1.

