8. Path integrals, ghosts and Grassmann numbers

To be discussed on Thursday, December 12, 2013 in the tutorial.

Exercise 8.1: Gaussian integrals

In the following, integration over \mathbb{R}^{n} is always understood.
a) Compute

$$
Z(0):=\int d^{n} \vec{x} e^{-\frac{1}{2} \vec{x}^{T} A \vec{x}}, \quad A^{T}=A
$$

b) Compute

$$
Z(\vec{j}):=\int d^{n} x e^{-\frac{1}{2} \vec{x}^{T} A \vec{x}+\vec{j}^{T} \vec{x}}, \quad \vec{j} \in \mathbb{R}^{n} .
$$

c) Define

$$
\langle B(\vec{x})\rangle:=\frac{1}{Z(0)} \int d^{n} \vec{x} B(\vec{x}) e^{-\frac{1}{2} \vec{x}^{T} A \vec{x}} .
$$

Show that $\langle 1\rangle=1$.
d) Show that

$$
\int d^{n} \vec{x} \frac{\partial}{\partial x^{i}}\left(B(\vec{x}) e^{-\frac{1}{2} \vec{x}^{T} A \vec{x}}\right)=0 .
$$

e) Show that

$$
\left\langle B\left(x_{1}, \ldots, x_{n}\right)\right\rangle=\left.\frac{B\left(\frac{\partial}{\partial j_{1}}, \ldots, \frac{\partial}{\partial j_{n}}\right) Z(\vec{j})}{Z(0)}\right|_{\vec{j}=0}
$$

f) Compute $\left\langle x_{i} x_{j}\right\rangle$:
i) directly,
ii) using d) and taking $B(\vec{x})=x_{j}$,
iii) using e).
g) Compute $\left\langle x_{i} x_{j} x_{k} x_{l}\right\rangle$:
i) using d) with $B(\vec{x})=x_{j} x_{k} x_{l}$,
ii) using e).

Exercise 8.2: Faddeev-Popov ghosts and Grassmann numbers

Determinants of operators such as the Faddeev-Popov determinant $\Delta_{\mathrm{FP}}=\operatorname{det} P$ can formally be written as a separate path integral over a now set of auxiliary variables. In order for this to be
possible, these auxiliary variables have to be anti-commuting rather than ordinary commuting numbers. Two anti-commuting numbers (or Grassmann numbers) ϕ and η satisfy

$$
\phi \eta=-\eta \phi
$$

and hence $\phi^{2}=0$. Because of this, the most general function of on Grassmann variable ϕ is

$$
f(\phi)=A+B \phi
$$

with $A, B \in \mathbb{C}$.
Integrals over Grassmann variables ("Berezin integrals") are defined by

$$
\begin{equation*}
\int d \phi[A+B \phi]:=B \tag{1}
\end{equation*}
$$

a) Defining the derivative

$$
\frac{d}{d \phi} \phi=1, \quad \frac{d}{d \phi} A=0 \quad(A \in \mathbb{C})
$$

show that the Berezin integral of a total derivative is zero and that the Berezin integral is translation invariant, i.e.,

$$
\begin{aligned}
\int d \phi \frac{d}{d \phi} f(\phi) & =0 \\
\int d \phi f(\phi+a) & =\int d \phi f(\phi) \quad \text { for } a \in \mathbb{C}
\end{aligned}
$$

These properties mimic similar properties of ordinary integrals of the type $\int_{-\infty}^{\infty} d x f(x)$, which is the motivation for the unusual definition (1). Note that, for Grassmann variables, integration and differentiation are equivalent operations.
b) If one has several linearly independent Grassmann variables $\phi_{i}(i=1, \ldots, n)$, where

$$
\phi_{i} \phi_{j}=-\phi_{j} \phi_{i} \quad \forall i, j,
$$

one defines

$$
\int d \phi_{1} \ldots d \phi_{n} f\left(\phi_{i}\right)=c
$$

where c is the coefficient in front of the $\phi_{n} \phi_{n-1} \ldots \phi_{1}$-term in $f\left(\phi^{i}\right)$ (note the order):

$$
f=\cdots+c \phi_{n} \phi_{n-1} \ldots \phi_{1} .
$$

Let n be even and split the ϕ_{i} into two sets $\psi_{m}, \chi_{m}\left(m=1, \ldots, \frac{n}{n}\right)$:

$$
\left(\phi_{1}, \ldots \phi_{n}\right)=\left(\psi_{1}, \chi_{1}, \psi_{2}, \chi_{2}, \ldots, \psi_{\frac{n}{2}}, \chi_{\frac{n}{2}}\right) .
$$

Show that

$$
\left(\prod_{m=1}^{\frac{n}{2}} \int d \psi_{m} d \xi_{m}\right) e^{\sum_{m=1}^{\frac{n}{2}} \chi_{m} \lambda_{m} \psi_{m}}=\prod_{m=1}^{\frac{n}{2}} \lambda_{m}
$$

where $\lambda_{m} \in \mathbb{C}$ are ordinary c-numbers and the exponential is defined via its power series expansion.
c) If the λ_{m} are the eigenvalues of an operator Λ, one thus obtains

$$
\left(\prod_{m=1}^{\frac{n}{2}} \int d \psi_{m} d \chi_{m}\right) e^{\sum_{m, l=1}^{\frac{n}{2}} \chi_{m} \Lambda_{m l} \psi_{l}}=\operatorname{det} \Lambda
$$

or, in a path integral context with Grassmann-valued fields $\psi(x), \chi(x)$ and a differential operator Δ,

$$
\int \mathcal{D}[\psi] \mathcal{D}[\chi] e^{\int d^{d} x \chi \Delta \psi}=\operatorname{det} \Delta .
$$

Using similar arguments (see, e.g. Polchinski, Chapter 3.3 for a detailed account), one obtains

$$
\operatorname{det} P=\int \mathcal{D}\left[c_{\alpha}\right] \mathcal{D}\left[b^{\beta \gamma}\right] \exp \left[-\frac{i}{4 \pi} \int d^{2} \sigma \sqrt{h} b^{\alpha \beta}(P c)_{\alpha \beta}\right]
$$

where $b^{\alpha \beta}(\sigma)=\beta^{\beta \alpha}(\sigma)$ is a symmetric traceless anti-commuting field, and $c_{\alpha}(\sigma)$ is an anticommuting world sheet vector field. Show that, due to the symmetry and tracelessness of $b^{\alpha \beta}$, one can write

$$
\operatorname{det} P=\int \mathcal{D}\left[c_{\alpha}\right] \mathcal{D}\left[b^{\beta \gamma}\right] \exp \left[-\frac{i}{2 \pi} \int d^{2} \sigma \sqrt{h} b^{\alpha \beta} \nabla_{\alpha} c_{\beta}\right] .
$$

d) It is more convenient to use $b_{\alpha \beta}$ ("anti-ghost") and c^{α} ("ghost") as the independent fields, as they turn out to be neutral under Weyl transformations, whereas $b^{\alpha \beta}$ and c_{α} are not due to additional powers of the (inverse) metric. Use

$$
S_{\text {ghost }}=-\frac{i}{2 \pi} \int d^{2} \sigma \sqrt{h} b_{\alpha \beta} \nabla^{\alpha} c^{\beta}
$$

to derive the ghost action in flat world sheet light cone coordinates:

$$
\begin{equation*}
S_{\text {ghost }}=\frac{i}{\pi} \int d^{2} \sigma\left(c^{+} \partial_{-} b_{++}+c^{-} \partial_{+} b_{--}\right) . \tag{2}
\end{equation*}
$$

e) Derive the equations of motion for $c^{ \pm}$and $b_{ \pm \pm}$from (2).
f) The total gauge fixed path integral is now

$$
Z=\int \mathcal{D}[X] \mathcal{D}[c] \mathcal{D}[b] e^{i\left[S_{\mathrm{P}}+S_{\mathrm{ghost}}\right] h_{\alpha \beta}=\eta_{\alpha \beta}}
$$

and one clearly sees that it would have been inconsistent to simply set $h_{\alpha \beta}=\eta_{\alpha \beta}$ and drop the $\mathcal{D}[h]$ integration, as that would have missed the ghost contribution. To appreciate the ghost contribution, one notes that the total energy momentum tensor $T_{\alpha \beta}$ now also gets a contribution from the ghost action

$$
T_{\alpha \beta}=T_{\alpha \beta}[X]+T_{\alpha \beta}[b, c]
$$

which modifies the central charge term in the Virasoro algebra to

$$
A(m)=\frac{D}{12} m\left(m^{2}-1\right)+\frac{1}{6}\left(m-13 m^{3}\right)+2 a m
$$

A non-vanishing total $A(m)$ translates to an anomaly of the local Weyl transformations. Verify that this anomaly is absent if and only if $D=26$ and $a=1$.

