3. The 2-sphere

To be discussed on Thursday, November 7, 2013 in the tutorial.

Exercise 3.1: Nambu-Goto action of the 2-sphere

A two-sphere of fixed radius ρ in three-dimensional Euclidean space, \mathbb{R}^{3}, can be considered a Euclidean analogue of an (admittedly some-what peculiar) string world sheet. Using $(\theta, \phi) \in$ $[0, \pi] \times[0,2 \pi]$ as the analogue of the world sheet coordinates (τ, σ), the standard spherical coordinates yield the embedding functions

$$
\begin{aligned}
X^{1}(\theta, \phi) & =\rho \sin \theta \cos \phi \\
X^{2}(\theta, \phi) & =\rho \sin \theta \sin \phi \\
X^{3}(\theta, \phi) & =\rho \cos \theta
\end{aligned}
$$

which are the analogues of $X^{\mu}(\tau, \sigma)$ for the usual string.
a) Calculate the matrix

$$
M=\left(\begin{array}{ll}
\frac{\partial \vec{X}}{\partial \theta} \cdot \frac{\partial \vec{X}}{\partial \theta} & \frac{\partial \vec{X}}{\partial \theta} \cdot \frac{\partial \vec{X}}{\partial \phi} \\
\frac{\partial \vec{X}}{\partial \phi} & \frac{\partial \vec{X}}{\partial \theta} \\
\frac{\partial \vec{X}}{\partial \phi} & \cdot \frac{\partial \vec{X}}{\partial \phi}
\end{array}\right) .
$$

b) Calculate the area of the two-sphere using the Euclidean analogue of the Nambu-Goto action:

$$
A=\int_{0}^{\pi} \int_{0}^{2 \pi} d \theta d \phi \sqrt{\operatorname{det}(M)}
$$

Exercise 3.2: Differential geometry of a 2 -sphere

Consider the metric of a 2 -sphere of radius a:

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=a^{2}\left[d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right]
$$

The metric encodes all information on the geometry of the manifold. We will determine all geometric quantities that are relevant for general relativity:
a) The metric: Choosing $x^{1}=\theta$ and $x^{2}=\phi$, read of the matrix $g_{\mu \nu}$.
b) The Christoffel symbols: The Christoffel symbols are defined as

$$
\Gamma_{\lambda \mu}^{\kappa}=\frac{1}{2} g^{\kappa \nu}\left(\frac{\partial g_{\mu \nu}}{\partial x^{\lambda}}+\frac{\partial g_{\mu \lambda}}{\partial x^{\mu}}-\frac{\partial g_{\lambda \mu}}{\partial x^{\nu}}\right) .
$$

They enter covariant derivatives such as $\nabla_{\mu} V^{\nu}=\partial_{\mu} V^{\nu}+\Gamma_{\mu \lambda}^{\nu} V^{\lambda}$, where the correction term with the Christoffel symbols ensures that the covariant derivative indeed transforms "covariantly" under arbitrary coordinate transformations $x^{\mu} \rightarrow x^{\mu}\left(x^{\nu}\right)$, i.e.,

$$
\nabla_{\mu} V^{\nu} \rightarrow\left(\nabla_{\mu} V^{\nu}\right)^{\prime}=\frac{\partial x^{\lambda}}{\partial x^{\prime \mu}} \frac{\partial x^{\prime \nu}}{\partial x^{\rho}} \nabla_{\lambda} V^{\rho}
$$

without second derivatives in the coordinates.
Compute the non-vanishing Christoffel symbols for the two-sphere. (Hint: $\Gamma_{\mu \nu}^{\lambda}=\Gamma_{\nu \mu}^{\lambda}$, so only a few components have to be computed explicitly.
c) The Riemann tensor: The Riemann curvature tensor has the form

$$
R_{\lambda \mu \nu}^{\kappa}=\partial_{\mu} \Gamma_{\nu \lambda}^{\kappa}-\partial_{\nu} \Gamma_{\mu \lambda}^{\kappa}+\Gamma_{\nu \lambda}^{\eta} \Gamma_{\mu \eta}^{\kappa}-\Gamma_{\mu \lambda}^{\eta} \Gamma_{\nu \eta}^{\kappa} .
$$

Calculate the non-vanishing components of $R_{\lambda \mu \nu}^{\kappa}$ for the two-sphere (Hint: Use the antisymmetry in μ and ν to avoid redundant computations).
d) The Ricci tensor: The Ricci tensor is defined as

$$
\operatorname{Ric}_{\mu \nu}=R_{\mu \lambda \nu}^{\lambda}
$$

Calculate $\operatorname{Ric}_{\mu \nu}$ for S^{2}.
e) The scalar curvature: The scalar curvature is given as

$$
\mathcal{R}=g^{\mu \nu} \operatorname{Ric}_{\mu \nu}
$$

Calculate \mathcal{R} for S^{2}. How does the scalar curvature behave in the limit $a \rightarrow \infty$? Interpret this behaviour.
f) The Einstein tensor: The Einstein equation is the field equation of general relativity. It relates the curvature of spacetime to the matter distribution:

$$
G_{\mu \nu}=8 \pi G T_{\mu \nu},
$$

where G denotes Newton's constant, $T_{\mu \nu}$ is the energy momentum tensor and $G_{\mu \nu}$ denotes the Einstein tensor:

$$
G_{\mu \nu}=\operatorname{Ric}_{\mu \nu}-\frac{1}{2} g_{\mu \nu} \mathcal{R} .
$$

Calculate $G_{\mu \nu}$ for S^{2}.

