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7. Quantization of the relativistic string

To be discussed on Thursday, December 5, 2013 in the tutorial.

Exercise 7.1: Old covariant quantization

In the old covariant quantization procedure, all fields Xµ(τ, σ)
(
µ = 0, . . . , (D − 1)

)
are

kept as dynamical variables. The corresponding naive Fock space HFock, which is generated by
action with all possible combinations of raising operators αµ−m (and ᾱµ−m for the closed string)
(m > 0) on the Fock vacuum |0, p〉, always contains negative norm states. These negative norm
states, however, are completely harmless provided they are all projected out by the physical
state conditions

Lm |phys〉 = 0 (m > 0) (1)

(L0 − 1) |phys〉 = 0 (2)

and similarly for the L̄m in the case of the closed string. These physical state conditions are
the quantum implementation of the classical Virasoro constraints.

a) Use the second of these constraint, eq. (2), as well as the relation
√

2α′pµ = αµ0 to derive
the mass shell condition for the open string:

α′m2 = (N − 1) , (3)

where
N =

∑
m>0

α−mαm

denotes the number operator. States that satisfy the relation (3) automatically solve the
constraint (2).

b) Consider the following open string state:

|Φ〉 =
1

2

[
α−1α−1 +

(D − 1)

5
pα−2 +

(D + 4)

10
(pα−1)2

]
|0, p〉 .

In the rest of this problem, we set

α′ =
1

2
.

We now want to verify whether this state is physical, i.e., whether this state satisfies (1)
and (2). Use first (3) from part a) to derive the constraint imposed on pµpµ = −m2 by
(2).

c) Use [αµm, Ln] = mαµm+n and (remembering α′ = 1
2
) pµ = αµ0 to show that |Φ〉 is annihilated

by L1, L2 and Lm>3. This implies that |Φ〉 is physical for all spacetime dimensions D.

d) Calculate the norm of |Φ〉 and show that there are negative norm states in the physical
spectrum for D > 26.
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Exercise 7.2: Path integral and Faddeev-Popov determinant

The Polyakov action SP[Xµ, hαβ] treats the embedding coordinates Xµ and the world sheet

metric hαβ as dynamical variables. SP is invariant under the (infinite-dimensional) group
diff×Weyl of world sheet diffeomorphisms (corresponding to arbitrary reparameterizations
σα → σ̃α(σβ)) and local Weyl rescalings of the metric hαβ → e2Λ(τ,σ)hαβ. These gauge sym-
metries allow one to classically eliminate hαβ as a dynamical variable by going to the gauge
hαβ = ηαβ.
In the quantum theory, this gauge fixing requires some more care and might even be impossible,
as is best seen in the path integral formulation (For a more detailed account on path integrals
and the Faddeev-Popov procedure see e.g. Peskin Schroeder, Ch. 9 and 16.) The naive vacuum
amplitude, or partition function,

Z =

∫
D[h]D[X]

Vdiff×Weyl

eiSP (4)

sums over all possible field configurations [Xµ(τ, σ), hαβ] between some fixed initial and final
values and weighs them with the exponential of the classical action. This path integral contains
a huge overcounting, as all gauge equivalent field configurations are independently integrated
over. Formally, one should therefore normalize this expression by dividing by the “volume”
Vdiff×Weyl of the local symmetry group, which, however, is itself infinite. In order to make the
naive expression (4) more meaningful, one should therefore use a change of integration variables

D[h]D[X]→ D[gauge equivalent]D[gauge inequivalent]

so that redundant integration over gauge equivalent configurations can be factored out and
formally be “canceled” by the volume factor, leaving an integration over the physically in-
dependent configurations only. Just as for finite-dimensional integrals this change of variables
comes with a Jacobian, the so-called Faddeev-Popov determinant ∆FP, which has to be included
in the remaining integration over the gauge inequivalent configurations,

Z =

∫
D[gauge inequivalent]∆FPe

iSP .

For the factorization into integrations over gauge equivalent and gauge inequivalent configu-
rations to be possible, the integration measure of the original path integral has to be gauge
invariant. If this is not the case, the gauge degrees of freedom cannot be consistently decoupled
in the quantum theory, and the theory becomes anomalous.
In our case, the gauge symmetries act non-trivially on hαβ, their infinitesimal action being given
by (c.f. the lecture)

δhαβ = ∇αξβ +∇βξα + 2Λhαβ

= (Pξ)αβ + 2Λ̃hαβ

with (Pξ)αβ ≡ ∇αξβ +∇βξα− (∇γξ
γ)hαβ and 2Λ̃ = 2Λ + (∇γξ

γ). As hαβ is completely gauged,
one can write

D[h] = D[Pξ]D[Λ̃] = D[ξ]D[Λ]

∣∣∣∣∣δ(Pξ, Λ̃)

δ(ξ,Λ)

∣∣∣∣∣ .
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a) Using δ(Pξ)
δξ

= P , show that, formally, the matrix(
δ(Pξ)
δξ

δ(Pξ)
δΛ

δΛ̃
δξ

Λ̃
δΛ

)
has lower triangular form.

b) Use this to infer that, formally, ∣∣∣∣∣δ(Pξ, Λ̃)

δ(ξ,Λ)

∣∣∣∣∣ = detP .

Hence, detP play the role of the Faddeev-Popov determinant, and one has

Z =

∫
D[X](detP )eiSP[X,hαβ=ηαβ ] .

Exercise 7.3: Analytic confinuation of the zeta function

Consider the definition of the gamma function and the Riemann zeta function,

Γ(s) =

∞∫
0

dte−tts−1 , ζ(s) =
∞∑
n=1

n−s .

a) Prove that

Γ(s)ζ(s) =

∞∫
0

dt
ts−1

et − 1
,<(s) > 1 .

b) Verify the small t expansion

1

et − 1
=

1

t
− 1

2
+

t

12
+O(t2) .

c) Use the above equation to show that for <(s) > 1

Γ(s)ζ(s) =

1∫
0

dtts−1

(
1

et − 1
− 1

t
+

1

2
− t

12

)
+

1

s− 1
+

1

2s
+

1

12(s+ 1)
+

∞∫
1

dt
ts−1

et − 1
.

d) Explain why the right-hand side above is well defined also for <(s) > −2. It then follow
that this right-hand side defines an analytic continuation of the left-hand side to <(s) > −2.

e) Recall the pole structure of Γ(s) and use it to show that

ζ(0) = −1

2
and ζ(−1) = − 1

12
.

Argue that the zeta function regularization one would therefore conclude that

∞∑
n=1

= − 1

12
.
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